150 TIME-DEPENDENT CIRCUIT ANALYSIS
(a)
2 F v(t)
4 Ω
1
2
10 V
2 Ω
1 H
t = 0
S
+
−
+
−
Figure E3.3.1
I(s) V(s)
(b)
10
s
2
s
2 Ω
s
+
+
−
−
Solution
With switchSin position 1 for a long time,
vC( 0 −)=vC( 0 +)=10 V
iL( 0 −)=iL( 0 +)= 0
The transformed network in the frequency domain is shown in Figure E3.3.1(b).
The KVL equation is given by
I(s)
(
2
s
+ 2 +s
)
=
10
s
or
I(s)=
10
s^2 + 2 s+ 2
and V(s)=I(s)( 2 +s)
Thus,
V(s)=
10 (s+ 2 )
s^2 + 2 s+ 2
=
K 1
s+ 1 −j 1
+
K 1 ∗
s+ 1 +j 1
where
K 1 =
10 (− 1 +j 1 + 2 )
(− 1 +j 1 )+ 1 +j 1
= 5
√
2 e−jπ/^4
By taking the inverse Laplace transform, we get
v(t)= 10
√
2 e−tcos
(
t−
π
4
)
V