150 TIME-DEPENDENT CIRCUIT ANALYSIS
(a)2 F v(t)4 Ω
1
210 V2 Ω1 Ht = 0S+−+−Figure E3.3.1I(s) V(s)(b)10
s2
s2 Ωs++−
−SolutionWith switchSin position 1 for a long time,vC( 0 −)=vC( 0 +)=10 V
iL( 0 −)=iL( 0 +)= 0The transformed network in the frequency domain is shown in Figure E3.3.1(b).
The KVL equation is given byI(s)(
2
s+ 2 +s)
=10
s
orI(s)=10
s^2 + 2 s+ 2and V(s)=I(s)( 2 +s)Thus,V(s)=10 (s+ 2 )
s^2 + 2 s+ 2=K 1
s+ 1 −j 1+K 1 ∗
s+ 1 +j 1
whereK 1 =10 (− 1 +j 1 + 2 )
(− 1 +j 1 )+ 1 +j 1= 5√
2 e−jπ/^4By taking the inverse Laplace transform, we getv(t)= 10√
2 e−tcos(
t−π
4)
V