0195136047.pdf

(Joyce) #1

150 TIME-DEPENDENT CIRCUIT ANALYSIS


(a)

2 F v(t)

4 Ω
1
2

10 V

2 Ω

1 H

t = 0

S

+


+


Figure E3.3.1

I(s) V(s)

(b)

10
s

2
s

2 Ω

s

+

+



Solution

With switchSin position 1 for a long time,

vC( 0 −)=vC( 0 +)=10 V
iL( 0 −)=iL( 0 +)= 0

The transformed network in the frequency domain is shown in Figure E3.3.1(b).
The KVL equation is given by

I(s)

(
2
s

+ 2 +s

)
=

10
s
or

I(s)=

10
s^2 + 2 s+ 2

and V(s)=I(s)( 2 +s)

Thus,

V(s)=

10 (s+ 2 )
s^2 + 2 s+ 2

=

K 1
s+ 1 −j 1

+

K 1 ∗
s+ 1 +j 1
where

K 1 =

10 (− 1 +j 1 + 2 )
(− 1 +j 1 )+ 1 +j 1

= 5


2 e−jπ/^4

By taking the inverse Laplace transform, we get

v(t)= 10


2 e−tcos

(
t−

π
4

)
V
Free download pdf