3.3 LAPLACE TRANSFORM 151
EXAMPLE 3.3.2
Obtainv(t) in the circuit of Figure E3.3.2(a) by using the Laplace transform method.
+
− +
−
v(t)
i(t) i(t)
Vs(t) = 10 u(t)
(a)
0.5 Ω
3
2
0.25 Ω 1 Ω 0.5 H
2 F 0.5 Ω
+
−
− + +
−
V(s)
I(s) I(s)
(b)
0.5 Ω
3
2
0.25 Ω 1 Ω s/2
0.5 Ω
+
−
10
s^1
2 s
I(s) s/2
(c)
1 Ω
+
+
−
−
I(s)
B
0 (Reference node)
V(s)
3
2
(^1) Ω
4
(^1) Ω
2
(^1) Ω
2
40
s
1
2 s
A
Figure E3.3.2
Solution
All initial values of inductor current and capacitor voltage are zero fort<0 since no excitation
exists. The transformed network is shown in Figure E3.3.2(b). Let us convert all voltage sources
to current sources and use nodal analysis [Figure E3.3.2(c)].
The KCL equations are given by
VA( 4 + 2 s+ 1 )−VB( 1 )=
40
s
−
3
2
Is
−VA( 1 )+VB
(
1 + 2 +
1
s/ 2 + 1 / 2
)
3
2
I(s)
I(s)= 2 sVA