3.4 FREQUENCY RESPONSE 161H(ω), dBθ(ω), deg090018080400.1 1 10 100ω /α^2 + β^2Slope = 90 °/decadeSlope = 40 dB/decadeω /α^2 + β^2Figure 3.4.8Asymptotic Bode plot for
the quadraticH(s)= 1 + 2
α
α^2 +β^2
s+
s^2
α^2 +β^2
.Y(jω) ̄ =^1
R+jωL+ 1 /j ω C=1
R+j(ωL− 1 /ωC)(3.4.7)At theseries resonant frequencyω 0 = 1 /
√
LC,Y(jω ̄ 0 )=^1
R=Y 0corresponds to maximum admittance (or minimum impedance). The ratioY/Y 0 can be written as
Y ̄
Y 0(j ω)=RR+j(
ωL−1
ωC)=
11 +j(
L
R)(
ω−1
ωLC)=11 +jω 0 L
R(
ω
ω 0−ω 0
ω) (3.4.8)Introducing aquality factorQS=ω 0 L/Randper-unit source frequency deviationδ=(ω−
ω 0 )/ω 0 ,
Y ̄
Y 0(jω)=11 +jQS(
ω
ω 0−ω 0
ω)=11 +jδQS(
2 +δ
1 +δ) (3.4.9)Forδ<<1, i.e., for small frequency deviations around the resonant frequency, Equation (3.4.9)
becomes, near resonance,
Y ̄
Y 0(jω)=1
1 +j 2 δQS(3.4.10)which is the equation of theuniversal resonance curveplotted in Figure 3.4.9. The curve
applies equally well to the parallelGLCcircuit withZ/Z ̄ 0 as the ordinate, when the value of
Qp=ω 0 C/G. The bandwidth and the half-power points in a resonant circuit (either series or
parallel) correspond toω 0 /Qand 2δQ=±1 when the magnitudeY/Y 0 orZ/Z 0 is 0.707.