164 TIME-DEPENDENT CIRCUIT ANALYSIS
V 2 =z 21 I 1 +z 22 I 2 =zfI 1 +zoI 2 (3.4.14)
where
z 11 =zi=
V 1
I 1
∣
∣∣
∣
∣
I 2 = 0
=open-circuit input impedance
z 12 =zr=
V 1
I 2
∣
∣
∣
∣
∣
I 1 = 0
=open-circuit reverse transfer impedance
z 21 =zf=
V 2
I 1
∣
∣
∣
∣
∣
I 2 = 0
=open-circuit forward transfer impedance
z 22 =zo=
V 2
I 2
∣
∣
∣
∣
∣
I 1 = 0
=open-circuit output impedance
- Two-port hybrid orhparameters,
V 1 =h 11 I 1 +h 12 V 2 =hiI 1 +hrV 2 (3.4.15)
I 2 =h 21 I 1 +h 22 V 2 =hfI 1 +hoV 2 (3.4.16)
where
h 11 =hi=
V 1
I 1
∣
∣
∣
∣
∣
V 2 = 0
=short-circuit input impedance (ohms)
h 12 =hr=
V 1
V 2
∣
∣
∣
∣
∣
I 1 = 0
=open-circuit reverse voltage gain (dimensionless)
h 21 =hf=
I 2
I 1
∣
∣∣
∣
∣
V 2 = 0
=short-circuit forward current gain (dimensionless)
h 22 =ho=
I 2
V 2
∣
∣
∣
∣
∣
I 1 = 0
=open-circuit output admittance (siemens)
EXAMPLE 3.4.3
Consider Equations (3.4.11) through (3.4.16). Develop they-parameter,z-parameter, andh-
parameter equivalent circuits. Also express thez-parameters in terms ofy-parameters.
Solution
Equations (3.4.11) and (3.4.12) can be expressed as
−I 1 +(y 11 +y 12 )V 1 −y 12 (V 1 −V 2 )= 0
−I 2 +(y 22 +y 12 )V 2 −y 12 (V 2 −V 1 )+(y 21 −y 12 )V 1 = 0