164 TIME-DEPENDENT CIRCUIT ANALYSIS
V 2 =z 21 I 1 +z 22 I 2 =zfI 1 +zoI 2 (3.4.14)wherez 11 =zi=V 1
I 1∣
∣∣
∣
∣
I 2 = 0=open-circuit input impedancez 12 =zr=V 1
I 2∣
∣
∣
∣
∣
I 1 = 0=open-circuit reverse transfer impedancez 21 =zf=V 2
I 1∣
∣
∣
∣
∣
I 2 = 0=open-circuit forward transfer impedancez 22 =zo=V 2
I 2∣
∣
∣
∣
∣
I 1 = 0=open-circuit output impedance- Two-port hybrid orhparameters,
V 1 =h 11 I 1 +h 12 V 2 =hiI 1 +hrV 2 (3.4.15)
I 2 =h 21 I 1 +h 22 V 2 =hfI 1 +hoV 2 (3.4.16)whereh 11 =hi=
V 1
I 1∣
∣
∣
∣
∣
V 2 = 0=short-circuit input impedance (ohms)h 12 =hr=V 1
V 2∣
∣
∣
∣
∣
I 1 = 0=open-circuit reverse voltage gain (dimensionless)h 21 =hf=I 2
I 1∣
∣∣
∣
∣
V 2 = 0=short-circuit forward current gain (dimensionless)h 22 =ho=I 2
V 2∣
∣
∣
∣
∣
I 1 = 0=open-circuit output admittance (siemens)EXAMPLE 3.4.3
Consider Equations (3.4.11) through (3.4.16). Develop they-parameter,z-parameter, andh-
parameter equivalent circuits. Also express thez-parameters in terms ofy-parameters.SolutionEquations (3.4.11) and (3.4.12) can be expressed as
−I 1 +(y 11 +y 12 )V 1 −y 12 (V 1 −V 2 )= 0−I 2 +(y 22 +y 12 )V 2 −y 12 (V 2 −V 1 )+(y 21 −y 12 )V 1 = 0