5.4 APPLICATIONS OF OPERATIONAL AMPLIFIERS 249
io
iS
= 1 +
Rf
R 1
(5.4.28)
Charge-to-Charge Amplifier
A circuit is shown in Figure 5.4.7 in which there is a capacitorC 1 in the−input line and a
capacitorCfin the feedback loop. KCL at nodeXgives
dq 1
dt
+
dqf
dt
= 0 (5.4.29)
whereq 1 andqfare charges on the input and feedback capacitors. Thus,
q 1 =−qf or C 1 vi=−Cfvo or
vo
vi
=−
C 1
Cf
(5.4.30)
Negative Impedance Converter
The op-amp circuit of Figure 5.4.8 causes a negative resistanceRinbetween the input terminal
and ground. In the more general case, whenRis replaced by an impedanceZ,the circuit gives a
negative impedance. Using ideal op-amp techniques, one has
v 1 =vin; i 1 =
v 1
R 1
=
vin
R 1
=i 2
vo=i 2 (R 1 +R 2 )=vin
(
1 +
R 2
R 1
)
; i 3 =
vo−vin
R
=vin
R 2
RR 1
=−iin
so that
Rin=
vin
iin
=−R
R 1
R 2
(5.4.31)
−
+
X vo
Cf
C 1
vi
Figure 5.4.7Charge-to-charge amplifier.
−
+
vo
i 2
iin i^3
i 1
v 1
Rin vin
2 3
1
R 1 R 2
+ R
−
Figure 5.4.8Negative impedance converter.