278 DIGITAL BUILDING BLOCKS AND COMPUTER SYSTEMS
TABLE 6.1.3Basic Boolean Identities
Identity Comments1.X+ 0 =X Identities 1–9 are basic to Boolean algebra
2.X+ 1 = 1
3.X+X=X
4.X+X ̄= 1
5.X· 0 = 0
6.X· 1 =X
7.X·X=X
8.X·X ̄= 0
9.X ̄ ̄=X
10.X+Y=Y+X Commutative
11.X·Y=Y·X Commutative
12.X+(Y+Z)=(X+Y)+Z Associative
13.X·(Y·Z)=(X·Y)·Z Associative
14.X·(Y+Z)=X·Y+X·Z Distributive
15.X+Y·Z=(X+Y)·(X+Z)
16.X+X·Y=X Absorption
17.X·(X+Y)=X
18.X·Y+X ̄·Z+Y·Z=X·Y+X ̄·Z Consensus
19.X+Y+Z=X ̄·Y ̄·Z ̄ DeMorgan
20.X·Y·Z=X ̄+Y ̄+Z ̄ DeMorganEXAMPLE 6.1.3For the switching functionF=A(
A ̄+B)
, draw a corresponding set of logic blocks and write
the truth table.SolutionA suitable connection of logic blocks is shown in Figure E6.1.3. Using the intermediate variables,
the truth table is as follows.A
BA
F = A (A + B)
A + BFigure E6.1.3ABA A+B F
001 1 0
011 1 0
100 0 0
110 1 1EXAMPLE 6.1.4
Derive the Boolean function for the combinational network shown in Figure E6.1.4(a).