13.2 INDUCTION MACHINES 569
Zt=R 1 +jXl 1 +
jXm
(
R′ 2
S
+jX′l 2
)
R 2 ′
S
+j(XM+X′l 2 )
= 0. 3 +j 0. 5 +
j 15 ( 7. 5 +j 0. 2 )
7. 5 +j( 15 + 0. 2 )
=( 0. 3 +j 0. 5 )+( 5. 87 +j 3. 10 )= 6. 17 +j 3. 60
= 7. 14 30 .26°
Phase voltage= 220 /
√
3 =127 V
Stator input current= 127 / 7. 14 = 17 .79 A
Power factor=cos 30.26°= 0. 864
Synchronous speed= 120 × 60 / 6 =1200 r/min
Rotor speed=( 1 − 0. 02 ) 1200 =1176 r/min
Total input power=
√
3 × 220 × 17. 79 × 0. 864 = 5856 .8W
Stator copper loss= 3 × 17. 792 × 0. 3 = 284 .8W
Power transferred across air gapPg= 5856. 8 − 284. 8 =5572 W
Pgcan also be obtained as follows:
Pg=m 1 (I 2 ′)^2 R′ 2 /S=m 1 I 12 Rf
whereRfis the real part of the parallel combination ofjXmandR 2 ′/S+jX′l 2. Thus,
Pg= 3 × 17. 792 × 5. 87 =5573 W
Internal mechanical power developed=Pg( 1 −S)= 0. 98 × 5572 =5460 W
Total mechanical power output= 5460 − 400 =5060 W, or 5060/ 745. 7 = 6 .8hp
Total output torque=output powerωm =output power( 1 −S)ωs
Since,
ωs=
4 πf
poles
=
4 π× 60
6
= 40 π= 125 .7 mechanical rad/s
it follows that
Total output torque=
5060
0. 98 × 125. 7
= 41 .08 N·m
Efficiency=
5060
5856. 8
= 0. 864 ,or 86.4%
The efficiency may alternatively be calculated from the losses:
Total stator copper loss=284.8 W
Rotor copper loss=m 1 (I 2 ′)^2 R′ 2 =SPg= 0. 02 × 5572 = 111 .4W
Friction, windage, and core losses=400 W
Total losses= 284. 8 + 111. 4 + 400 = 796 .2W
Output=5060 W
Input= 5060 + 796. 2 = 5856 .2W
Efficiency= 1 −
losses
input
= 1 −
796. 2
5856. 2
= 1 − 0. 136 = 0 .864, or 86.4%
Torque-Speed Characteristics of 3-Phase Induction Motors
Because the torque–slip characteristic is one of the most important aspects of the induction motor,
we will now develop an expression for torque as a function of slip and other equivalent circuit
parameters. Recalling Equation (13.2.8) and the equivalent circuit of Figure 13.2.6, we will obtain