Step-by-step solution
Patm is known. We find PH2O and add the two quantities together to find the absolute pressure Pabs.
Step Reason
1. Patm = 1.013×10^5 Pa standard value
2. PH2O = ȡgh gauge pressure equation
3. substitute values
4. PH2O = 4.90×10^5 Pa evaluate
5. Pabs = PH2O + Patm absolute pressure
6. substitute equations 1 and 4 into equation 5
13.6 - Physics at work: measuring pressure
Atmospheric pressure is not constant, even at a fixed
height like sea level. In Concept 1, you see a simple
barometer. Barometers measure atmospheric
pressure. The terms “barometer” and “barometric
pressure” are sometimes heard in weather reports
because changes in atmospheric pressure often
indicate that a change of weather is on the way.
The barometer depicted on the right consists of a
vertical tube, closed at the top. This tube is partially
filled with a liquid, commonly the liquid metal mercury,
and is placed in a container that serves as a
reservoir. The mercury in the tube stands in a column,
with the space at the top of the tube occupied by a
near vacuum, which exerts negligible pressure.
Increased air pressure pushing down on the surface of the reservoir causes the column
of mercury to rise, until the air pressure and the pressure due to the mercury column
reach equilibrium. The pressure exerted by this liquid column, the product of its density,
the acceleration of gravity, and its height, equals the external air pressure.
On a typical day at sea level, air pressure causes the mercury to rise to a height of
about 760 millimeters, or about 30 inches. (The pressure of a one-millimeter column of
mercury is called a torr, after the physicist Evangelista Torricelli.) The design of this
instrument should give you a sense of how strong atmospheric pressure is: It is able to
force a column of mercury, which is denser than lead, to rise more than three-quarters
of a meter.
In Concept 2 you see an open-tube manometer, a device for measuring the gauge
pressure of a gas confined in a spherical vessel. The vessel that contains the gas is
connected to a U-shaped tube partially filled with mercury and open to the atmosphere
at its far end. This apparatus allows physicists to accurately determine the gauge
pressure of the gas.
The pressure inside the spherical vessel on the left-hand side is an absolute pressure. It
presses down on the surface of the left-hand column of mercury, but the higher column
of mercury and the air pressure on the right side push back. When the two columns of
mercury are in equilibrium, the absolute pressure of the gas equals the sum of the
atmospheric pressure and the pressure exerted by the extra mercury on the right-hand
side of the instrument. This equality is shown in Equation 2. In the equation, the product
ȡgh represents the pressure exerted by a column of mercury of height h.
The height h of the extra mercury, indicated in the diagram, equals the amount by which
the mercury level on the right is higher than the mercury level on the left. It can be used
with the density of mercury and the acceleration of gravity to calculate the product ȡgh.
This product equals the difference between the absolute pressure of the gas in the
vessel and atmospheric pressure. In other words, the product ȡgh gives the gauge
pressure of the gas, in pascals. When the gauge pressure is expressed in “millimeters
of mercury,” or torr, then its numeric value equals the numeric value of the height h,
measured in millimeters.
Dial-type barometer, calibrated in millimeters of mercury and millibars.
Barometer
Air pressure equals pressure of mercury
·Height of mercury reflects air pressure
Open-tube manometer
Vessel pressure
= atm pressure + mercury pressure
(^254) Copyright 2000-2007 Kinetic Books Co. Chapter 13