8.2 Simplex Tableau 109
:J-:0---0
: /
0:0---0
*•••*: 1
B~lN\ '•.B~lN
- :ce — Cnv: •
B-lb
-dB^b
For all the rows except the objective function row, do the following oper-
ation. For row i, multiply Vi*(the updated first row) and subtract from row
i. For the objective function row, multiply the first row by (ce — CBTV) and
subtract from the objective function row.
What we have at the end is another simplex tableau.
:0---0
_Vj_
,~Ce cgV.Q.. .Q
:0
:0
*•••*: 0 :*••• *
a
—c^B^1 b — a(ce — CgV BU) A
Example 8.2.1 The starting tableau at point P is
A b
=rllo
B\N\\b
rCT\rT\\()
B\CN\\U
=
"-1 2
01
03
1 0
2-1
2 0
6"
6
0
The final tableau after Gauss-Jordan iterations is
Zl
y
z
zi y
1 0
0 1
00
X Zi
3-2
2 -1
-4 3
RHS~
6
6
-18
=
B-XN \B~lb
0\rT
v\cN
c^^JVll -cost
Since the reduced cost for x is — 4 < 0, x should enter the basis. The
minimum ratio a = Mm{|, |} = 2 due to z\, thus z\ should leave the basis.