8.2 Simplex Tableau 109:J-:0---0: /0:0---0*•••*: 1B~lN\ '•.B~lN- :ce — Cnv: •
B-lb-dB^b
For all the rows except the objective function row, do the following oper-
ation. For row i, multiply Vi*(the updated first row) and subtract from row
i. For the objective function row, multiply the first row by (ce — CBTV) and
subtract from the objective function row.
What we have at the end is another simplex tableau.:0---0_Vj_
,~Ce cgV.Q.. .Q:0:0*•••*: 0 :*••• *a—c^B^1 b — a(ce — CgV BU) AExample 8.2.1 The starting tableau at point P is
A b
=rlloB\N\\b
rCT\rT\\()
B\CN\\U="-1 2
01
031 0
2-1
2 06"
6
0The final tableau after Gauss-Jordan iterations isZl
y
zzi y
1 0
0 1
00X Zi
3-2
2 -1
-4 3RHS~
6
6
-18=B-XN \B~lb
0\rT
v\cNc^^JVll -cost
Since the reduced cost for x is — 4 < 0, x should enter the basis. The
minimum ratio a = Mm{|, |} = 2 due to z\, thus z\ should leave the basis.