132 9 Number Systems
1 !• ^ %- -%f y >y y ^
Fig. 9.2. Uncountability equivalence of (a,b) and (0,1)
-1 +1
Fig. 9.3. The correspondence between (-1,1) and '.
Example 9.6.11 / : R i-» (—f,f), /(x) = arctan(rr) is a i-i correspon-
dence, i.e. fix) is 1-1 and onto. Refer to Figure 9.4-
*=
arctan(x) ^^-^
7l<2
j, *arctan(x) x
~~rJ2
Fig. 9.4. The correspondence between (-f ,f) and
Proposition 9.6.12 // (a, b) is any open interval, then
(0,l)~(a,&)~R~[0,l)-
Proof.
3/:(0,l)^[0,l)isl-l(/(a:) = a;).
3g : [0,1) ^ R is 1-1 {g(x) = x).
1:R4 (0,1) is 1-1 and onto (f(x) = x).
[0,1) 4M4 (0,1) is 1-1.
By Cantor-Schruder-Bernstein Theorem [0,1) ~ (0,1). •