10.1 Metric Spaces 141
Example 10.1.19 See Figure 10.5. q G intE but p g" intE.
Fig. 10.5. Example 10.1.19
Example 10.1.20 Let X be any set with at least two elements, with the dis-
crete metric:
Letpe X, E = {p}. Then,
intE = E, r < 1 => Br(p) = p c E => p £ intE.
Example 10.1.21 Let X = R^2 with d 2 metric. See Figure 10.6.
T
Fig. 10.6. Example 10.1.21
E = {p = (x,y) £ R^2 : 1 < x^2 + y^2 < 4} =>
intE = {p = (x,y) e M^2 : 1 < x^2 + y^2 < 4}.
Definition 10.1.22 E is said to be open set if intE = E, i.e.
\fpeE,3r>0 3 Br(p) C E.
Example 10.1.23 In K^2 , E = {p = (x,y) £ E^2 : 1 < x^2 + y^2 < 4} is open.
Remark 10.1.24 By convention, E = 0, E = X are open sets.
Definition 10.1.25 Let p £ X. A subset N of X is called a neighborhood of
p if p G intN.