Principles of Mathematics in Operations Research

(Rick Simeone) #1
196 14 Special Transformations

Then, the unique solution is y(t) = etAyo +p(t), where

etAyo

2e* + e"
2e< - e~
and

p(t) =
/ 0 V (e~u + ue"") + e-'(e~" - ue-")] du
/o [e'(e-" + we"") + e^e"" + we" du
Then, after integration we have

p(t) =

-2 v(t)

3et-t
3e*-2

One can sotoe i/ie akwe differential equation system using Laplace trans-
forms:

y'(t) = Ay(t) + f(t)^s

<£>
s -1
-1 s

»i(s)~

*7i(«)

01
10

l

^i(s)

(*)





i i
i

Then, the resolvent matrix is

(sI-A)-^
1
(s-l)(s + l

If we multiply both sides of (*) 6y (**), we /wroe

s 1
1 s
(**)

T](S) =

T)(s)

1

(s-i)(s + i) L

I
s-l +

3s+ 1
s + 3

1

y(*) =


  • s^2 (s-l)(s + l)


1

s^2 + l
2s

0
-2
3e(-£
3e' -2

In order to find e , we expand right hand side of (•*) as

n(s) =

["1
2
1
L2

ll
2
1
1 i i 2 J
+ s + 1 •\ 2-

If we invert it, we will have the following


•" = £


e* + e * el — e *
Free download pdf