198 14 Special Transformations
y(k) = Aky 0 and A^0 = I.
When A is singular, there does not exist a unique solution y(—1) satisfying
Ay( — 1) = 2/o- When yl is non-singular,
j,(fc) = ^-^1 J/(A:+l).
Then, j/(-l) = A^yo, y(-2) = ^~^2 2/o, ••• where ^-fc = A^A-^^1 =
(^-^1 )fc, A = 2,3,... Recall that, if A = SJS'^1 then Ak = S^S'^1. Then,
y(k) = SJS-^1 y 0 , k = 0,1,...
For the non-homogeneous case,
y(fc + 1) = Aj/(fc) +/(fc).
If >1 is nonsingular,
2/(fc) = ^fc!/o+p(*0,
where p(fc + 1) = Ap(k) + f(k); p(0) = 0. This yields
-l
p(k) = -YlAk~^1 - vf{.v).
v—k
Example 14.3.1 For k = 0,1,...,
Vi(k + l) = y 2 (k) + l, yi(0) = 3,
y 2 {k + 1) = yi(k) + 1, 3/ 2 (0) = 1.
A
k
= l
l + (-l)fc l-(-l)fc
1- (-l)fc l + (-l)fc , A
ky
0 =
2+(-l)fe
2-(-l)fc
fc-i
p(*) = « £
«=0
A;-M + (-l)"(2-fc + w)
fc-u-(-l)u(2-fc + u)
W^e know,
>£<*_,,, >*G+I> and
M=0
fc-i fc-i
|(2 - *) ^C-
1
)" + | S "(-
1
)" = | - §(-!)
u=0 u=0
1 r 2fc^2 -3(-l)fc + 3
_2k^2 + 4k + 3{-l)k - 3
5
P(k) = -
y(k) = k^2 + k + (-!)* +