226 Solutions
4.2 Let
A =
"1 1
2 1
0 1
1 -1
2 -2
-1
1
1
1
2
-1
2
0
3
2
-1
1
-1
1
4
d(s) 2)^5 , fc = 1, Ax =2, m =5.
Ai = A - 11 =
-1 1 -1 -1 -1
2-1121
0 1-1 0-1
1-1111
2-2222
=> dimN{A{) = 5 - rank^) = 5-3 = 2.
A\ = 0 => dimN{A\) = 5 => mj = 2, m(s) = (s - 2)^2.
Choose v 2 e JV(-AI) 9 Axv 2 ^ 0.
«2=e? = (l,0,0,0,0)r => v 1 =A 1 v 2 = (-l,2,0,l,2)T.
Choose v 4 ^ OT 2 3 a ^ 0, v 4 e Af(Al) 3 Axv 2 / 6.
v 4 = e\ = (0,1,0,0,0)^2 V3 AlV4 = (l,-l,l,-l,2)T.
Choose W5 € Af(Ai) independent from v\ and vz-
V5 = (1,0,0)-1,0)T.
Thus,
5 =
-11 10 1
2 0-11 0
00 10 0
10-10-1
2 0-20 0
S-lAS =
"2 1
2
2 1
2
2
4.3
A =
-A-10 lo r -i- 0 "
0 — — v
10 10
0 0 *>.
=* d(s) = (a - — J , fc =
A1 = A-l/ =
"o ^ o"
0 0i
0 0 0
= 1,A =
1
To'
n = 3
dimM(Ai) = 3 - ranfc(A 1 ) = 3 - 2 1.