Principles of Mathematics in Operations Research

(Rick Simeone) #1
226 Solutions

4.2 Let

A =

"1 1
2 1
0 1
1 -1
2 -2

-1
1
1
1
2

-1
2
0
3
2

-1
1
-1
1
4

d(s) 2)^5 , fc = 1, Ax =2, m =5.

Ai = A - 11 =

-1 1 -1 -1 -1
2-1121
0 1-1 0-1
1-1111
2-2222
=> dimN{A{) = 5 - rank^) = 5-3 = 2.

A\ = 0 => dimN{A\) = 5 => mj = 2, m(s) = (s - 2)^2.
Choose v 2 e JV(-AI) 9 Axv 2 ^ 0.

«2=e? = (l,0,0,0,0)r => v 1 =A 1 v 2 = (-l,2,0,l,2)T.

Choose v 4 ^ OT 2 3 a ^ 0, v 4 e Af(Al) 3 Axv 2 / 6.

v 4 = e\ = (0,1,0,0,0)^2 V3 AlV4 = (l,-l,l,-l,2)T.

Choose W5 € Af(Ai) independent from v\ and vz-


V5 = (1,0,0)-1,0)T.

Thus,


5 =

-11 10 1
2 0-11 0
00 10 0
10-10-1
2 0-20 0

S-lAS =

"2 1
2
2 1
2
2

4.3


A =

-A-10 lo r -i- 0 "
0 — — v
10 10
0 0 *>.

=* d(s) = (a - — J , fc =


A1 = A-l/ =

"o ^ o"

0 0i
0 0 0

= 1,A =

1
To'
n = 3

dimM(Ai) = 3 - ranfc(A 1 ) = 3 - 2 1.
Free download pdf