228 Solutions
where
A =
' 0
0
1
20
3
L 100
0
0
1
50
0
3
100
1
25
0
0
1 -1
50
1
100
0
0
and the initial condition is W 0 = [100,60,40,30]T.
(b) A = SAS-\ where
S =
0.46791
0.54010
0.64713
0.26563
-0.46791 -0.20890 -0.20890
-0.54010 0.69374 0.69374
0.64713 0.33092 -0.33092
0.26563 -0.60464 0.60464
0.79296 0.23878 0.63090 0.34529
-0.79296 -0.23878 0.63090 0.34529
-0.61736 0.53484 0.27717 -0.67525
-0.61736 0.53484 -0.27717 0.67525
and A —
-0.052845 0.000000
0.000000 0.052845
0.000000 0.000000
0.000000 0.000000
AtC-U
0.000000 0.000000
0.000000 0.000000
-0.010365 0.000000
0.000000 0.010365
The solution is W = SeMS~lW 0
X 1 (t)
Yi(t)
Y 2 (t)
0.46791 -0.46791
0.54010 -0.54010
0.64713 0.64713
0.26563 0.26563
-0.20890 -0.20890
0.69374 0.69374
0.33092 -0.33092
-0.60464 0.60464
-0.052845 t
„0.052845t
-0.010365t
„0.010365«
0.79296 0.23878 0.63090 0.34529
-0.79296 -0.23878 0.63090 0.34529
-0.61736 0.53484 0.27717 -0.67525
-0.61736 0.53484 -0.27717 0.67525
100
60
40
30
Since 5 _1W 0 =
129.220
-58.028
-38.816
-20.475
we have