Principles of Mathematics in Operations Research

(Rick Simeone) #1
258 Solutions
Min (xia + x2a + x3a) H 1- {xip + x2p + x3p)
s.t.
(xla + xig) - (xlb + xlf) = 0\
(x2a + X2 9 ) - (x 2 b + x 2 f) = 0 > node 1
(X3a + XZg) - (x3b + X 3 f) = 0 J

(zip) - (xio) = 10
(x2p) - {x2o) = —10 ^ node OP
(x3p) - (x3o) = 0
Xla + X2a + X3a < 10

b)


xip + x2p + x3p < 10
xia,--- ,x3p>0 (integer)

Min ]T Y

Ck

rfp

k pevk
s.t.
Y fp =
D
<<
Pf=Vk
Y Y ^fr ^

U



  • k P£Vk
    fp < V-P
    fP>0 (integer)
    We have (huge number of) K2m variables, m + K constraints and K1m
    simple bounds other than the nonnegativity constraints. The following sets
    the relation between the decision variables of the two formulations whose
    constraints are isomorphic:


xak = Y taPfP' fp = m^YXak (aPPlied recursively).
P£Vk k
Free download pdf