264 Solutions
Ba
100
0 10
00 1
101
101
010
000
001
000
001
000
100
010
010
000
000
000
000
100
0 10
001
000
000
000
000
000
000
000
000
000
0000
0000
0010
0000
0000
0000
1000
0 100
0010
00 11
0000
0000
0000
0000
0000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
10000
01000
00100
00010
00001
cl 3 = [5 4600000400000 0]
2/3 = [5 4 6J0 0 0 0 0 -2000000]
Then, the lengths of arcs are Cka + wa = 1 + 0 = 1, V arcs except arc h, whose
length is 1 — 2 = —1. For all the three commodities, the minimum shortest
distances between the source and the sink nodes are greater and equal to the
corresponding dual variables. Therefore, the current solution given below is
optimal.
X^3 = (B 3 lb)T = [h h /l3 Sb Sd Se Sf Sg /l2 Sj Si Sm Sn S 0 Sp]
xl 3 = (B^bf =[ 10 10 0 0 0 0 10 10 10 0 10 0 0 0 10]
The optimum solution is depicted in Figure S.16.
e) When the number of variables (columns of A) is huge, the following ques-
tion is asked: Can one generate column A* by some oracle that can answer
the question, Does there exist a column with with reduced cost < 0? If so,
the oracle returns one. So, the sketch of so called "A Column Generation
Algorithm" is given below:
SI. Solve LP(J):
mm
for some J C I — {1,..., n).
S2. Using dual variables 7r that are optimal for LP(J), ask the oracle if there
exists j 0 J such that CjirA^ < 0. If so, add it to J and perform pivot(s)
to solve new LP(J); Go back SI. If not, we have the optimal solution to
LP over all columns.