Principles of Mathematics in Operations Research

(Rick Simeone) #1
290 Solutions

Problems of Chapter 14

14.1

y"(t) - y(t) = e2t & s^2 r](s) - 2s - r)(s) = <& r?(s)(s^2 - 1) = r + 2s.
s-2 s-2


V(s) =

1
+

2s
(s-2)(s^2 -l) s^2 -l'


  1. If V(s) = ^ + ^r + ^r == (»-2)(^-l)- (,-vU-iy Solve fOT A'B'C-


A+B+C=0
W + C = 0
-A + 25 - 2C = 1 *H-*4

C
=T-

Thus, ??(s) = ^TVT6(8-2) ^ + -- 6(3+1) 6(s-l)-


  1. If V(a) = ^ + ^ = I^I=r) = ^j. Solve for tf,F:


£ + F = 2
E-F = 0
=»E = 1, F = 1.

Thus, i;(a) = -
Then, we have


  • +• -+-
    1 ~ «+!•


^


=

3(^2)


+

6^TI)


+

2(^1) ^<>


=

r


2t+

h~*


+

?*•


14.2


2/0 + 1) = t/(fc) + 2efe <= zt](z)-z = r)(z) + (^2) rz <=> rj(z)(z-l) = z + 2
z — e
z — e
V{z) = 2-1 (2-l)(,z-e)' + 2
If»?(«) = r-TTi v = -A + -s- then A = ^- and B = -V
Therefore, 'V / (2-lllz-ei z —^1 z —e^1 —e - ^
(z —l)(z —e) z —1 z —e e-1-
!/(*) =
2-1



  • 2
    1 A 2
    1-e u-1; e+ — 1 \ z — e
    14.3
    «.j,(fc) = l + - (l-efc).
    1 — e
    ^ = -0.2y, ^ = -0.3s - O.ly, x(0) = 50, y(0) = 100.
    §-o-al.g~a4-<u4^-Iu»,+Iu2 = o<*)

Free download pdf