CHEMICAL ENGINEERING

(Amelia) #1

MASS TRANSFER 221


which may be written as:


∂CA
∂t

DD


[


∂^2 CA


∂r^2

C


2


r

∂CA


∂r

C


1


r^2

υ
∂

(


 1 ^2


∂CA


∂


)


C


1


r^2  1 ^2

∂^2 CA


∂^2


]


iii

where: Dcosˇ. iv


In this problem∂CA/∂tis given by:

∂CA
∂t

DD


(


∂^2 CA


∂r^2

C


1


r^2

∂^2 CA


∂ˇ^2


C


1


r^2 sin^2 ˇ

∂^2 CA


∂^2


C


2


r

∂CA


∂r

C


cotˇ
r^2

∂CA


∂ˇ


)


v

Comparing equations (iii) and (v) is necessary to prove that:

1
r^2


∂


(


 1 ^2


∂CA


∂


)


C


1


r^2  1 ^2

∂^2 CA


∂^2


D


1


r^2

∂^2 CA


∂ˇ^2


C


1


r^2 sin^2 ˇ

∂^2 CA


∂^2


C


cotˇ
r^2

∂CA


∂ˇ


Dcosˇ, 1 ^2 D 1 cos^2 ˇDsin^2 ˇ


1


r^2  1 ^2

∂^2 CA


∂^2


D


1


r^2 sin^2 ˇ

∂^2 CA


∂^2


It now becomes necessary to prove that:

1
r^2

∂^2 CA


∂ˇ^2


C


cotˇ
r^2

∂CA


∂ˇ


D


1


r^2


∂


(


 1 ^2


∂CA


∂


)


vi

From equation (iv): Dcosˇ


∴ ∂/∂ˇDsinˇvii


and: ∂^2 /∂ˇ^2 Dcosˇviii


1
r^2


∂


(


 1 ^2


∂CA


∂


)


D


1


r^2


∂ˇ


(


 1 ^2


∂CA


∂ˇ


∂ˇ


∂


)


∂ˇ


∂


Substituting from equation (iv) forfrom equation (vii) for∂ˇ/∂gives:

D


1


r^2


∂ˇ


(


 1 cos^2 ˇ

∂CA


∂ˇ


1


sinˇ

)


1


sinˇ

D


1


r^2


∂ˇ


(


sinˇ

∂CA


∂ˇ


)


1


sinˇ

D


1


r^2

[


sinˇ

∂^2 CA


∂ˇ^2


C


∂CA


∂ˇ


cosˇ

]


1


sinˇ

D


1


r^2

∂^2 CA


∂ˇ^2


C


cotˇ
r^2

∂CA


∂ˇ


PROBLEM 10.6


Prove that for equimolecular counter diffusion from a sphere to a surrounding stationary,
infinite medium, the Sherwood number based on the diameter of the sphere is equal to 2.

Free download pdf