MASS TRANSFER 223
ConcentrationCAiCAoLy
0Figure 10a.ReplacingCAibyC^0 iandCAbyC^0 where:CADC^0 CCAoandCAiDC^0 iCCAo,then
using these new variables:
At: tD 0 C^0 D 00 <y<L
t> 0 C^0 DC^0 i yD 0
t> 0 C^0 D 0 yDLThe problem states that the solution of the one dimensional diffusion equation is:C^0 Dsteady state solution C∑^1
0expn^2 ^2 Dt/L^2
Ansinny/L
where the steady state solutionDC^0 iC^0 iy/L.
(A derivation of the analogous equation for heat transfer may be found inConduction
of Heat in Solidsby H. S. Carslaw and J. C. Jaeger, Oxford, 1960.)
AnD2
L
∫L
0initial concentration profile – steady state sinny/L
dyD
2
L
∫L
0[0CC^0 iy/L
C^0 i]sinny/L
dyD 2 C^0 i/n(this proof is given at the end of this problem).Hence: C^0 DC^0 iC^0 iy/L
2 C^0 i
∑^1
nD 01
nexpn^2 ^2 Dt/L^2 sinny/L
∴ CDCoCCiCo
[
1
y
L2
∑^1
nD 01
nexpn^2 ^2 Dt/L^2 sinny/L
]
AnD2
L
∫L
0[C^0 iy/L
C^0 i]sinny/L
dy