224 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
D
2 C^0 i
L^2∫L
0ysinny/L
dy2 C^0 i
L∫L
0sinny/L
dyD
2 C^0 i
L^2∫L
0^1
2 C^0 i
L∫L
0^2
∫L
0D 1
[
Ly
ncosny
L]L
0C
∫L
0L
ncosny
LdyPuttinguDy,duDdy
and: dvDsinny/L
dy, vD
L
ncosny
L∴
∫L
0D 1
(
Ly
ncosny
L)L
0C
(
L^2
n^2 ^2sinny
L)L
0DL^2
ncosnCL^2
n^2 ^2sinnDL^2
n 1
n
∫L0D 2
(
L
ncosny
L)L
0D
L
ncosnCL
nDL
ncosnCL
nDL
n 1
nCL
nAnD2 C^0 i
L^21
2 C^0 i
LD 2
2 C^0 i
L^2(
L^2
n 1
n)
2 C^0 i
L(
L
n 1
nCL
n)
D 2 C^0 i/nPROBLEM 10.8
Show that under the conditions specified in Problem 10.7 and assuming the Higbie model
of surface renewal, the average mass flux at the interface is given by:
NA (^) tDCAiCAo
D/L
{
1 C 2 L^2 /^2 Dt
n∑D1nD 1[
^2
6
1
n^2expn^2 ^2 Dt/L^2]}
Use the relation
∑^1
nD 11
n^2D^2 /6.
Solution
The rate of transference across the phase boundary is given by:
NADD∂CA/∂y
yD 0