MASS TRANSFER 225
According to the Higbie model, if the element is exposed for a timete, the average
rate of transfer is given by:
NAD
1
te∫te0D∂C/∂z
zD 0 dtFrom Problem 10.7, the concentrationCis:CDCAoCCAiCAo[
1
y
L2
∑^1
nD 01
nexpn^2 ^2 Dte/L^2 sinny/L]
∂C
∂yDCAiCAo[
1
L
2
∑^1
nD 0L
expn^2 ^2 Dte/L^2 cosny/L]
(
∂C
∂y)
yD 0DCAiCAo[
1
L
2
∑^1
0L
expn^2 ^2 Dte/L^2]
NAD
DCAiCAo
te∫te0[
1
L
2
∑^1
0L
expn^2 ^2 Dte/L^2]
dtD
DCAiCAo
te[
te
L2
∑^1
0L
(
L^2
n^2 ^2 D)
expn^2 ^2 Dte/L^2]te0DDCAiCAo
te
[
te
L2
∑^1
0(
L
n^2 D)
expn^2 ^2 Dte/L^2 C2
∑^1
0L
(
L^2
n^2 ^2 D)]
NAD
D
L
CAiCAo{
1 C
2 L^2
^2 Dte[ 1
∑
01
n^2expn^2 ^2 Dte/L^2 C∑^1
01
n^2]}
∑^1
01
n^2expn^2 ^2 Dte/L^2 C∑^1
01
n^2D
∑^1
01
n^2expn^2 ^2 Dte/L^2 C∑^1
11
n^2expn^2 ^2 Dte/L^2 C∑^1
01
n^2C
∑^1
11
n^2Dexp^2 Dte/L^2 C∑^1
11
n^2expn^2 ^2 Dte/L^2 C 1 C^2 / 6D
∑^1
1[
^2
6
1
n^2expn^2 ^2 Dte/L^2 C 1 exp^2 Dte/L^2]
Considering the terms 1exp^2 Dte/L^2 and Dte/L^2 to be very small so that
^2 Dte/L^2 is small and exp^2 Dte/L^2 !1. Therefore, 1exp^2 Dte/L^2 is