MASS TRANSFER 245
Then:
∂CN^0
∂tD
∫ 1
0ept∂C^0
∂tdt (equation 10.102)D[eptC^0 ]^10 Cp∫ 1
0eptC^0 dtDpCN^0 (equation 10.103)Since the Laplace transform operation is independent ofy,
∂^2 C^0
∂y^2D
∂^2 C^0
∂y^2(equation 10.104)Taking Laplace transforms of both sides of equation 10.100:
pCN^0 DD∂^2 CN^0
∂y^2
∂^2 CN^0
∂y^2p
DCN^0 D 0
From which: CN^0 DAe
p
p/D
yCBep
p/D
y (equation 10.105)When yD1, CN^0 D0andAD 0
When yD 0 , CN^0 DC^0 i/p and BDC^0 i/p∴ CN^0 D
C^0 i
pep
p/D
ydCN^0
dyD
C^0 i
p
pDep
p/D
yInverting:
∂C^0
∂yD
C^0 i
p
Dð1
p
tey(^2) / 4 Dt
(See Volume 1, Appendix Table 12)
The mass transfer rate at the surface,NA (^) tDD
(
∂C^0
∂y)
yD 0DC^0 i√
D
tat timetThe average rate of mass transfer in timet:
1
t∫t0C^0 i√
D
tdtD 2 C^0 i√
D
tTaking 1 m^2 of surface, the area disrupted by the bubbles per second is:120 ð 15 / 10000 D 0. 18 /s∴Average surface age durationD 1 / 0. 18
D 5 .55 s
C^0 iD 0. 16 0. 03
/ 100 D 0 .0013 kg O 2 /kg steelD 0. 0013 / 32
ð 7100
D 0 .2885 kmol/m^3