CHEMICAL ENGINEERING

(Amelia) #1

MASS TRANSFER 245


Then:


∂CN^0


∂t

D


∫ 1


0

ept

∂C^0


∂t

dt (equation 10.102)

D[eptC^0 ]^10 Cp

∫ 1


0

eptC^0 dtDpCN^0 (equation 10.103)

Since the Laplace transform operation is independent ofy,


∂^2 C^0
∂y^2

D


∂^2 C^0


∂y^2

(equation 10.104)

Taking Laplace transforms of both sides of equation 10.100:


pCN^0 DD

∂^2 CN^0


∂y^2
∂^2 CN^0
∂y^2




p
D

CN^0 D 0


From which: CN^0 DAe


p
p/D
yCBe

p
p/D
y (equation 10.105)

When yD1, CN^0 D0andAD 0
When yD 0 , CN^0 DC^0 i/p and BDC^0 i/p

∴ CN^0 D


C^0 i
p

e

p
p/D
y

dCN^0
dy

D


C^0 i
p
pD

e

p
p/D
y

Inverting:


∂C^0


∂y

D


C^0 i
p
D

ð

1


p
t

ey

(^2) / 4 Dt
(See Volume 1, Appendix Table 12)
The mass transfer rate at the surface,NA (^) tDD


(


∂C^0


∂y

)


yD 0

DC^0 i


D


t

at timet

The average rate of mass transfer in timet:


1
t

∫t

0

C^0 i


D


t

dtD 2 C^0 i


D


t

Taking 1 m^2 of surface, the area disrupted by the bubbles per second is:

120 ð 15 / 10000 D 0. 18 /s

∴Average surface age durationD 1 / 0. 18
D 5 .55 s


C^0 iD 0. 16  0. 03
/ 100 D 0 .0013 kg O 2 /kg steelD 0. 0013 / 32
ð 7100
D 0 .2885 kmol/m^3

Free download pdf