MASS TRANSFER 247
When tD 0 , L<y< 0 CADCA 0
When tD 0 , 0 <y<L CAD 0
When t> 0 yDLCADCA 0
When t> 0 yDCLCAD 0For gasB:
∂CB
∂tDD
∂^2 CB
∂y^2
When tD 0 L<y< 0 CBD 0
When tD 00 <y<L CBDCB 0
When t> 0 yDLCBD 0
When t> 0 yDCLCBDCB 0and for all values ofy:
∂CA
∂y
C
∂CB
∂yD 0
As in previous problems, these equations may be solved by the use of Laplace transforms.
Fory>0:
CNADAe
p
p/D
yCBep
p/D
yand fory<0:
CNADA^0 epp/D
yCB (^0) e
p
p/D
yCC
A 0 /p
The boundary conditions may now be used to evaluate the constants thus:
AD
CA 0 /p
Pe^2p
p/D
L2 1 e^2p
p/D
LBD
CA 0 /p
2 1 e^2p
p/D
LA^0 DB^0 e^2p
p/D
LB^0 D
Be^2p
p/D
LC 1
e^2p
p/D
LC 1
Substituting these values:
CAD
CA 0
2
n∑D1nD 0[
erfc2 nLCy
2p
Dterfc2 nC 1
Ly
2p
Dt]
This relation can be checked as follows:
(a) WhenyD0:CADCA 0
2
∑^1
0[
erfcnL
p
DterfcnC 1
L
p
Dt]
D
CA 0
2
(b) WhenyDL:CAD 0