254 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
or: D
dCA
dy{
D
dCA
dyC
d
dy(
D
dCA
dy)
dy}
Dk 2 C^2 A
dy
D
d^2 CA
dy^2Dk 2 C^2 Ad^2 CA
dy^2k 2
DC^2 AD 0
Putting: qD
dCA
dy, then:d^2 CA
dy^2D
dq
dyD
dq
dCAÐ
dCA
dyDqdq
dCASubstituting: q
dq
dCAk 2
DC^2 AD 0
qdqDk 2
DC^2 A
Integrating:
q^2
2D
k 2
DC^3 A
3
CK
WhenyD1,qD0,CAD0 and:KD 0
Thus:
1
2
(
dCA
dy) 2
D
k 2
DC^3 A
3
dCA
dyDš√
2
3
k 2
DC^3 A/^2
AsNADDdCA/dy
is positive, negative root must apply and:
C
3 / 2
A dCAD√
2
3
k 2
DdyIntegrating: 2 CA^1 /^2 D
√
2
3
k 2
DyCKWhenyD0,CADCAsand:KD 2 CAs^1 /^2
Thus: C
1 / 2
A C
1 / 2
As D1
2
√
2
3
k 2
Dyor: CAs^1 /^2
[(
CA
CAs) 1 / 2
1
]
D
√
1
6
k 2
DyC
1 / 2
As{(
CAs
CA) 1 / 2
1
}
D
√
1
6
k 2
Dy.(i) For the conditions given:√
1
6
k 2
DD
√{(
1
6
)(
9. 5 ð 103
1. 8 ð 10 ^9)}
D 0. 938 ð 106 (m/kmol)^0.^5