MASS TRANSFER 275
The rising velocity is given by a force balance:3 d 1 uD^16 d^31 + 1 + 2
gor: u 1 D
d^21 g
18 + 1 + 2
DKd^21 relative to continuous phaseThe downward liquid velocity is^12 Kd^21
The upward droplet velocity relative to container is:Kd^21 ^12 Kd^21 D^12 Kd^21and the time of contact during rise through heightHis:
tcDH
1
2 Kd2
1. (i)
The mass transfer rate is:D∂CA/∂y
.Thus:
1
CAS
∂CA
∂yD
∂
∂y{
erfcy
2p
Dt}
D
∂
∂y{
2
p
∫ 1
y/ 2p
Dtey(^2) / 4 Dt
d
(
y
2p
Dt)}
D
∂
∂yÐ
1
2
p
Dt2
p
∫ 1
yey(^2) / 4 Dt
dt.
or:
∂CA
∂yD
CAS
p
Dtey(^2) / 4 Dt
(
∂CA
∂y)
yD 0D
CAS
p
DtThe mass transfer rate at the surface is: (moles/areaðtime).
D
(
CAS
p
Dt)
D
√
D
tCAS
The mass transfer in timete 1 is:
√
D
CAS
∫te 10t^1 /^2 dtD 2√
D
t^1 e 1 /^2 CASDKte^1 / 12Substituting from equation (i):
Mass transfer in moles per unit area of drop/p
2 H
p
Kd 1The mass transfer per drop is proportional to:
p
2√
H
K
d 11 d^21 /p
2√
H
K
d 1The mass transfer per unit timeDMass transfer per dropðdrops/timeor: proportional to:
p
2√
H
K
d 1 ð6 Q 1
d^31/ 8. 48
√
H
K
Q 1
d^21