280 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
The average mass transfer rate is:
1
te{
2
√
D
CAt^1 e/^2}
D 2
√
D
teCA
In the steady state if ft
is the age distraction function of the surface, then:
surface in age groupttotCdtDft
dtand: surface in age grouptdttotDftdt
dt
Surface of agetdttotwhich is destroyed is that not entering the next age group
ftdt
dtft
dtDsfftdt
dtgdtAs dt!0, then:f^0 t
dtdtDsft
dtdt
estf^0 t
Cestsft
D 0Integrating gives: estft
DK
then: ft
DKest i
As the total surfaceD 1 ,K
∫ 1
0estdtDK[
est
s] 1
0D
K
s∴KDsand: ft
Dsest ii
The mass transfer rate into the fraction of surface in the age groupttdtis:
√
D
tCAsestdtThe mass transfer rate into the surface over the age spantD0totD1is:D
√
D
CAs∫ 1
0t^1 /^2 estdtD√
D
CA
PuttingDstDˇ^2 , then:t^1 /^2 Dp
s
ˇand: sdtD 2 ˇdˇ.
ID
∫ 1
0p
s
ˇeˇ22 ˇdˇ
sD
2
p
s∫ 1
0eˇ2
dˇD2
p
sÐ
p
2D
√
s
Thus the mass transfer rate per unit area for the surface as a whole is:
√
D
CAs√
sD
p
DsCAWith the new age distribution function:
0 <t<1
s, surface renewal rate/areaDs ft
DKest
1
s<t< 1 , surface renewal rate/areaD 2 s ft
DK^0 e^2 st
from equation (ii)