CHEMICAL ENGINEERING

(Amelia) #1

288 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS


Solution


The derivation of the momentum equation for an element of the boundary layer is
presented in detail in Section 11.2 and the final expression is:


RoD
∂/∂x

∫l

0


usux uxdy

A sine function may be developed as follows. WhenyD0,uxD0andwhenyDυ,
uxDus.


Thus: uxDussin
ay


and whenyDυ,sinayD/2oraυD/2andaD/ 2 υ.


∴ uxDussin
y/ 2 d


and over the range 0<y<υ,



ux/us Dsin[
/ 2
y/υ ]

The integral in the momentum equation may now be evaluated for the laminar boundary
layer considering the ranges 0<y<υandυ<y<lseparately.



∫l

0


usux uxdyD

∫υ

0

u^2 sf 1 sin[
/ 2
y/υ ]gfsin[
/ 2
y/υ ]gdy

C


∫l

υ


usus usdy

Du^2 s

∫υ

0

[sin
y/ 2 υ sin^2
y/ 2 υ ]dy

Du^2 s[[cos
y/ 2 υ ]/
/ 2 υ y/ 2 Csin
y/υ /
2 /υ ]υ 0

Du^2 sυ[ 
2 / 
1 / 2 ]
R 0 D
∂ux/∂y yD 0 D us/ 2 υ

and substituting in the momentum equation:


∂


[


u^2 sυ

(


2








1


2


)]/


∂xD us/ 2 υ

∴ υdυD ^2 dx/us
4 


∴ υ^2 / 2 D[^2 /
4  ]
x/us


and: υD 4. 80
x/us 0.^5



υ/x D 4. 80
/xus 0.^5 D 4. 80 Rex^0.^5

Free download pdf