THE BOUNDARY LAYER 293
Solution
The derivation of the momentum equation is given in Section 11.2 to give:
∂
∂x
∫l
0
ux
usux dyDR 0 D dux/dyyD 0 (equation 11.9) (i)
If the velocity profile is a sine function, then:
ux/us Dsin[
/ 2
y/υ]
Differentiating:
1 /us∂ux/∂yD
/ 2 υcos[
/ 2
y/υ]
WhenyDυ,uxDusand
∂ux/∂yD 0
Differentiating again:
1 /us∂^2 ux/∂y^2 D ^2 / 4 υ^2 sin[
/ 2
y/υ]
WhenyD0,uxD0and∂^2 ux/∂y^2 D 0
Substituting, noting thatuxDuswheny>υ:
∫l
0
ux
uxus dyDus^2
∫υ
0
sin
y/υ
/ 2 [1sin
y/υ
/ 2 ]dy
Du^2 sυ
∫ 1
0
[sin
y/υ
/ 2 0. 5
1 cos
y/υ]d
y/υ
Du^2 sυ
([
2 /cos
y/υ
/ 2
] 1
0 ^0.^5
[
y/υ
] 1
0 C^0.^5
[
1 /sin
y/υ
] 1
0
)
Du^2 sυ
2 / 0. 5 C 0 D 0. 1366 u^2 sυ (as in Problem 11.8)
Substituting in equation (i):
∂
0. 1366 us^2 υ/∂xD
/ 2 us/υ
∴ υdυD
/ 2 / 0. 1366
/us dx
IfυD0whenxD0:
υ^2 /xD 11. 5
x/u^2 s
and:
υ/x^2 D 11. 5
/usxand
υ/xD 3. 39 Rex^0.^5
The displacement thickness,υŁis given by:
us
υυŁ D
∫υ
0
ussin[
y/υ
/ 2 ]dyDus
2 υ/
[
cos[
y/υ
/ 2 ]
] 1
0
∴ υυŁD 2 υ/D 0. 637 υ
and: υŁD 0. 363 υ
∴
υŁ/xD
0. 363 ð 3. 39 Rex^0.^5 D 1. 23 Rex^0.^5