CHEMICAL ENGINEERING

(Amelia) #1

296 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS


The mass flux across 1 – 2 is:


∫L


0 uxdy.

The change from 1–2 to 3–4 is:



∂x

{∫


L
0 uxdy

}


dx.

The rate of momentum entering through 2 – 4 is:






∂x

{∫L


0

uxusdy

}


dx,

Assumingus 6 Df
x , then:
∂P
∂x


D 0.


A momentum balance gives:






∂x

{∫L


0

u^2 xdy

}


dxD


∂x

{∫L


0

uxusdy

}


dxCR 0 dx

or: 



∂x

{∫L


0

ux
usux dy

}


DR 0 D


(


∂ux
∂y

)


yD 0

for a Newtonian fluid

The sine function is:

uxDKsinky,so

∂ux
∂y

DKkcoskyand

∂^2 ux
∂y^2

Kk^2 sinky

is satisfied for all finite values ofKandk.
The boundary conditions are:
yD 0 uxD 0


yD 0

∂^2 ux
∂y^2

D 0


yDυuxDus KDus

yDυ

∂ux
∂y

D 0


Thus: kD





2


andkD




2 υ

.


Hence: uxDussin





2


y
υ

,


∂ux
∂y

D


us
2 υ

cos




2


y
υ

and:


{∫L


y

}


D 0


Thus: u^2 s



∂x

{∫υ

0

sin




2


y
υ

(


1 sin




2


y
υ

)


dyD

    us
2 υ

∂x

υ

{∫ 1


0

[


sin




2


y
υ

sin^2




2


y
υ

]


d

y
υ

}


D





2 υus
Free download pdf