296 CHEMICAL ENGINEERING VOLUME 1 SOLUTIONS
The mass flux across 1 – 2 is:
∫L
0 uxdy.
The change from 1–2 to 3–4 is:
∂
∂x
{∫
L
0 uxdy
}
dx.
The rate of momentum entering through 2 – 4 is:
∂
∂x
{∫L
0
uxusdy
}
dx,
Assumingus 6 Df
x, then:
∂P
∂x
D 0.
A momentum balance gives:
∂
∂x
{∫L
0
u^2 xdy
}
dxD
∂
∂x
{∫L
0
uxusdy
}
dxCR 0 dx
or:
∂
∂x
{∫L
0
ux
usux dy
}
DR 0 D
(
∂ux
∂y
)
yD 0
for a Newtonian fluid
The sine function is:
uxDKsinky,so
∂ux
∂y
DKkcoskyand
∂^2 ux
∂y^2
Kk^2 sinky
is satisfied for all finite values ofKandk.
The boundary conditions are:
yD 0 uxD 0
yD 0
∂^2 ux
∂y^2
D 0
yDυuxDus KDus
yDυ
∂ux
∂y
D 0
Thus: kD
2
andkD
2 υ
.
Hence: uxDussin
2
y
υ
,
∂ux
∂y
D
us
2 υ
cos
2
y
υ
and:
{∫L
y
}
D 0
Thus: u^2 s
∂
∂x
{∫υ
0
sin
2
y
υ
(
1 sin
2
y
υ
)
dyD
us
2 υ
∂
∂x
υ
{∫ 1
0
[
sin
2
y
υ
sin^2
2
y
υ
]
d
y
υ
}
D
2 υus