100 4. Particular Determinants
= 0 if the parameters are not distinctW
′
ijk...r
= the sum of the determinants obtained by increasingthe parameters one at a time by 1 and discardingthose determinants with two identical parameters. (4.7.8)Illustration.Let
W=
∣
∣
CC
′
C′′∣
∣
=W 012.
Then
W
′
=W 013 ,W
′′
=W 014 +W 023 ,W
′′′
=W 015 +2W 024 +W 123 ,W
(4)
=W 016 +3W 025 +2W 034 +3W 124 ,W
(5)
=W 017 +4W 026 +5W 035 +6W 125 +5W 134 , (4.7.9)etc. Formulas of this type appear in Sections 6.7 and 6.8 on the K dV and
KP equations.
4.7.3 The Derivative of a Cofactor.............
In order to determine formulas for (W
(n)
ij)
′
, it is convenient to change thenotation used in the previous section.
LetW=|wij|n,where
wij=y(j−1)
i=D
j− 1
(yi),D=ddx,
and where theyiare arbitrary (n−1) differentiable functions.
Clearly,w′
ij
=wi,j+1.In column vector notation,
Wn=∣
∣C
1 C 2 ···Cn∣
∣,
where
Cj=[
y(j−1)
1 y(j−1)
2 ···y(j−1)
n]T
,
C
′
j=Cj+1.Theorem 4.26.
a.(
W
(n)
ij)′
=−W
(n)
i,j− 1−W
(n+1)
i,n+1;jn.
b.
(
W
(n)
i 1)′
=−W
(n+1)
i,n+1;1n