Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.7 Wronskians 103

Then,


ε


rs=εr+1,s+εr,s+1 (4.7.15)

and


εr 0 =δr,n− 1. (4.7.16)

Differentiating (4.7.16) repeatedly and applying (4.7.15), it is found that


εrs=

{

0 ,r+s<n− 1

(−1)

s
,r+s=n−1.

(4.7.17)

Hence,


W(y 1 ,y 2 ,...,yn)W(W


1 n
,W

2 n
,...,W

nn
)

=

∣ ∣ ∣ ∣ ∣ ∣ ∣

y 1 y 2 ··· yn

y


1 y


2 ··· y


n

y

(n−1)
1 y

(n−1)
2 ··· y

(n−1)
n

∣ ∣ ∣ ∣ ∣ ∣ ∣ n
∣ ∣ ∣ ∣ ∣ ∣ ∣
W

1 n
(W

1 n
)


··· (W

1 n
)

(n−1)

W

2 n
(W

2 n
)


··· (W

2 n
)

(n−1)

W

nn
(W

nn
)


··· (W

nn
)

(n−1)

∣ ∣ ∣ ∣ ∣ ∣ ∣ n =



∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

ε 00 ε 01 ε 02 ··· ··· ε 0 ,n− 2 ε 0 ,n− 1

ε 10 ε 11 ε 12 ··· ε 1 ,n− 3 ε 1 ,n− 2

ε 20 ε 21 ε 22 ··· ε 2 ,n− 3

εn− 2 , 0 εn− 2 , 1 ···

εn− 1 , 0 ···




∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

. (4.7.18)

From (4.7.17), it follows that those elements which lie above the secondary


diagonal are zero: those on the secondary diagonal from bottom left to top


right are


1 ,− 1 , 1 ,...,(−1)

n+1

and the elements represented by the symbol are irrelevant to the value of


the determinant, which is 1 for all values ofn. The theorem follows. 


The set of functions{W
1 n
,W
2 n
,...,W
nn
}are said to be adjunct to the

set{y 1 ,y 2 ,...,yn}.


Exercise.Prove that


W(y 1 ,y 2 ,...,yn)W(W

r+1,n
,W

r+2,n
,...,W

nn
)=W(y 1 ,y 2 ,...,yr),

1 ≤r≤n− 1 ,

by raising the order of the second Wronskian from (n−r)tonin a manner


similar to that employed in the section of the Jacobi identity.


4.7.6 Two-Way Wronskians.................


Let


Wn=|f

(i+j−2)
|n=|D

i+j− 2
f|n,D=

d

dx

,
Free download pdf