Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.8 Hankelians 1 109

4.8.5 Turanians........................


A Hankelian in whichaij=φi+j−2+ris called a Turanian by Karlin and


Szeg ̈o and others.


Let

T

(n,r)
=
















|φm+r|n, 0 ≤m≤ 2 n−2,

|φm|n,r≤m≤ 2 n−2+r,
∣ ∣ ∣ ∣ ∣ ∣
φr ··· φn−1+r

......................

φn−1+r ··· φ 2 n−2+r

∣ ∣ ∣ ∣ ∣ ∣

∣ n

CrCr+1Cr+2···Cn−1+r



.

(4.8.17)

Theorem 4.28.






T

(n,r+1)
T
(n,r)

T

(n,r)
T
(n,r−1)





=T

(n+1,r−1)
T

(n− 1 ,r+1)
.

Proof. Denote the determinant byT. Then, each of the Turanian ele-


ments inTis of ordernand is a minor of one of the corner elements in


T


(n+1,r−1)

. Applying the Jacobi identity (Section 3.6),


T=






T

(n+1,r−1)
11

T

(n+1,r−1)
1 ,n+1

T

(n+1,r−1)
n+1, 1 T

(n+1,r−1)
n+1,n+1






=T

(n+1,r−1)
T

(n+1,r−1)
1 ,n+1;1,n+1

=T

(n+1,r−1)
T

(n− 1 ,r+1)
,

which proves the theorem. 


Let

An=T

(n,0)
=|φi+j− 2 |n,

Fn=T

(n,1)
=|φi+j− 1 |n,

Gn=T

(n,2)
=|φi+j|n. (4.8.18)

Then, the particular case of the theorem in whichr= 1 can be expressed


in the form


AnGn−An+1Gn− 1 =F

2
n. (4.8.19)

This identity is applied in Section 4.12.2 on generalized geometric series.


Omit the parameterrinT

(n,r)
and writeTn.

Theorem 4.29. For all values ofr,







T

(n)
11

T

(n+1)
1 ,n+1

T

(n)
n 1

T

(n+1)
n,n+1






−TnT

(n+1)
1 n;1,n+1=0.
Free download pdf