Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

110 4. Particular Determinants


Proof. The identity is a particular case of Jacobi variant (A) (Sec-


tion 3.6.3),







T

(n)
ip

T

(n+1)
i,n+1

T

(n)
jp

T

(n+1)
j,n+1






−TnT

(n+1)
ij;p,n+1=0, (4.8.20)

where (i, j, p)=(1,n,1).


Let

An=T

(n,r)
,

Bn=T

(n,r+1)
.

Then Theorem 4.29 is satisfied by bothAnandBn. 


Theorem 4.30. For all values ofr,


a.AnB

(n+1)
n+1,n
−BnA

(n+1)
n+1,n
+An+1Bn− 1 =0.

b.Bn− 1 A


(n+1)
n+1,n−AnB

(n)
n,n− 1 +An−^1 Bn=0.

Proof.


Bn=(−1)

n
A

(n+1)
1 ,n+1

,

B

(n+1)
n+1,n=(−1)

n
A

(n+1)
n 1 ,

Bn− 1 =(−1)

n− 1
A

(n)
1 n

=(−1)

n
A

(n+1)
n,n+1;1,n+1,

A

(n+1)
1 n;n,n+1

=A

(n)
1 ,n− 1

=(−1)

n− 1
B

(n)
n,n− 1

. (4.8.21)

Denote the left-hand side of (a) byYn. Then, applying the Jacobi identity


toAn+1,


(−1)

n
Yn=






A

(n+1)
n 1

A

(n+1)
n,n+1

A

(n+1)
n+1, 1

A

(n+1)
n+1,n+1






−An+1A

(n+1)
n,n+1;1,n+1

=0,

which proves (a).


The particular case of (4.8.20) in which (i, j, p)=(n, 1 ,n) andT is

replaced byAis







An− 1 A

(n+1)
n,n+1

A

(n)
1 n A

(n+1)
1 ,n+1






−AnA

(n+1)
n1;n,n+1

=0. (4.8.22)

The application of (4.8.21) yields (b). 


This theorem is applied in Section 6.5.1 on Toda equations.
Free download pdf