110 4. Particular Determinants
Proof. The identity is a particular case of Jacobi variant (A) (Sec-
tion 3.6.3),
∣
∣
∣
∣
∣T
(n)
ipT
(n+1)
i,n+1T(n)
jpT
(n+1)
j,n+1∣
∣
∣
∣
∣
−TnT(n+1)
ij;p,n+1=0, (4.8.20)where (i, j, p)=(1,n,1).
LetAn=T(n,r)
,Bn=T(n,r+1)
.Then Theorem 4.29 is satisfied by bothAnandBn.
Theorem 4.30. For all values ofr,
a.AnB(n+1)
n+1,n
−BnA(n+1)
n+1,n
+An+1Bn− 1 =0.b.Bn− 1 A
(n+1)
n+1,n−AnB(n)
n,n− 1 +An−^1 Bn=0.Proof.
Bn=(−1)n
A(n+1)
1 ,n+1,
B
(n+1)
n+1,n=(−1)n
A(n+1)
n 1 ,Bn− 1 =(−1)n− 1
A(n)
1 n=(−1)
n
A(n+1)
n,n+1;1,n+1,A
(n+1)
1 n;n,n+1=A
(n)
1 ,n− 1=(−1)
n− 1
B(n)
n,n− 1. (4.8.21)
Denote the left-hand side of (a) byYn. Then, applying the Jacobi identity
toAn+1,
(−1)
n
Yn=∣
∣
∣
∣
∣
A
(n+1)
n 1A
(n+1)
n,n+1A
(n+1)
n+1, 1A
(n+1)
n+1,n+1∣
∣
∣
∣
∣
−An+1A(n+1)
n,n+1;1,n+1=0,
which proves (a).
The particular case of (4.8.20) in which (i, j, p)=(n, 1 ,n) andT isreplaced byAis
∣
∣
∣
∣
∣An− 1 A(n+1)
n,n+1A
(n)
1 n A(n+1)
1 ,n+1∣
∣
∣
∣
∣
−AnA(n+1)
n1;n,n+1=0. (4.8.22)
The application of (4.8.21) yields (b).
This theorem is applied in Section 6.5.1 on Toda equations.