4.9 Hankelians 2 1172.The Yamazaki–Hori determinantAnis defined as follows:
An=|φm|n, 0 ≤m≤ 2 n− 2 ,whereφm=1
m+1[
p2
(x2
−1)m+1
+q2
(y2
−1)m+1]
,p2
+q2
=1.LetBn=|ψm|n, 0 ≤m≤ 2 n− 2 ,whereψm=φm(x
2
−y
2
)
m+1.
Prove that∂ψm∂x=mF ψm− 1 ,whereF=−
2 x(y
2
−1)(x
2
−y
2
)
2.
Hence, prove that∂Bn∂x=FB
(n)
11 ,(x2
−y2
)∂An∂x=2x[
n2
An−(y2
−1)A(n)
11]
.
Deduce the corresponding formulas for∂Bn/∂yand∂An/∂yand henceprove thatAnsatisfies the equation(
x2
− 1x)
zx+(
y2
− 1y)
zy=2n2
z.3.IfAn=|φm|n,0≤m≤ 2 n−2, whereφmsatisfies the Appell equation,
prove thata.(A
ij
n)
′
=−φ
′
0A
i 1
nA
j 1
n
−(iA
i+1,j
n
+jA
i,j+1
n
), (i, j)=(n, n),b.(Ann
n)
′
=−φ′
0(A
1 n
n)
2
.4.Apply Theorem 4.33 and the Jacobi identity to prove that
(
AnAn− 1)′
=φ′
0(
A
(n)
1 nAn− 1) 2
.
Hence, prove (3b).