Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.9 Hankelians 2 117

2.The Yamazaki–Hori determinantAnis defined as follows:


An=|φm|n, 0 ≤m≤ 2 n− 2 ,

where

φm=

1

m+1

[

p

2
(x

2
−1)

m+1
+q

2
(y

2
−1)

m+1

]

,p

2
+q

2
=1.

Let

Bn=|ψm|n, 0 ≤m≤ 2 n− 2 ,

where

ψm=

φm

(x
2
−y
2
)
m+1

.

Prove that

∂ψm

∂x

=mF ψm− 1 ,

where

F=−

2 x(y
2
−1)

(x
2
−y
2
)
2

.

Hence, prove that

∂Bn

∂x

=FB

(n)
11 ,

(x

2
−y

2
)

∂An

∂x

=2x

[

n

2
An−(y

2
−1)A

(n)
11

]

.

Deduce the corresponding formulas for∂Bn/∂yand∂An/∂yand hence

prove thatAnsatisfies the equation

(
x

2
− 1

x

)

zx+

(

y

2
− 1

y

)

zy=2n

2
z.

3.IfAn=|φm|n,0≤m≤ 2 n−2, whereφmsatisfies the Appell equation,


prove that

a.(A
ij
n

)


=−φ

0

A

i 1
n

A

j 1
n
−(iA
i+1,j
n
+jA
i,j+1
n
), (i, j)=(n, n),

b.(A

nn
n

)


=−φ


0

(A

1 n
n

)

2
.

4.Apply Theorem 4.33 and the Jacobi identity to prove that


(

An

An− 1

)′



0

(

A

(n)
1 n

An− 1

) 2

.

Hence, prove (3b).
Free download pdf