Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.9 Hankelians 2 121

Proof. The sum formula forTcan be expressed in the form


n

j=1

ψr+i+j− 1 T

(n,r)
ij
=−δinT

(n+1,r)
n+1,n

, (4.9.10)

C


j=

[

(r+j)ψr+j(r+j+1)ψr+j+1···(r+j+n−1)ψr+j+n− 1

]T

n

.(4.9.11)

Let


C


j=C


j−(r+j)Cj+1

=

[

0 ψr+j+1 2 ψr+j+2···(n−1)ψr+j+n− 1

]T

n

. (4.9.12)

Differentiating the columns ofT,


T


=

n

j=1

Uj,

where


Uj=


∣C

1 C 2 ···C


j
Cj+1···Cn



n

, 1 ≤j≤n.

Let


Vj=


∣C

1 C 2 ···C


j
Cj+1···Cn



n

, 1 ≤j≤n

=

n

i=2

(i−1)ψr+i+j− 1 Tij. (4.9.13)

Then, performing an elementary column operation onUj,


Uj=Vj, 1 ≤j≤n− 1

Un=


∣C

1 C 2 ···Cn− 1 C


n



=


∣C

1 C 2 ···Cn− 1 C


n


∣+(r+n)


∣C

1 C 2 ···Cn− 1 Cn+1



=Vn−(r+n)T

(n+1,r)
n+1,n

. (4.9.14)

Hence,


T


+(r+n)T

(n+1,r)
n+1,n

=

n

j=1

Vj

=

n

j=1

(i−1)

n

j=1

ψr+i+j− 1 Tij

=−T

(n+1,r)
n+1,n

n

i=2

(i−1)δin

=−(n−1)T

(n+1,r)
n+1,n.

The theorem follows. 

Free download pdf