134 4. Particular Determinants
LetA=|φm|n, 0 ≤m≤ 2 n− 2 ,where
φm=x
2 m+2
− 1m+1.
Ais identical to|aij|n, whereaijis defined in Theorem 4.41. LetYdenote
the determinant of order (n+ 1) obtained by borderingAby the row
[
111 ... 1 •]
n+1below and the column
[1
1
3
1
5
...
1
2 n− 1•
]T
n+1on the right.
Theorem 4.42.
Y=−nKnφn(n−1)
0n
∑i=12
2 i− 1
(n+i−1)!(n−i)!(2i)!φn−i
0 ,whereKnis the simple Hilbert determinant.
Proof. Perform the column operations
C
′
j
=Cj−Cj− 1in the orderj=n, n− 1 ,n− 2 ,...,2. The result is a determinant in which
the only nonzero element in the last row is a 1 in position (n+1,1). Hence,
Y=(−1)
n∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∆φ 0 ∆φ 1 ∆φ 2 ··· ∆φn− 2 1∆φ 1 ∆φ 2 ∆φ 3 ··· ∆φn− 11
3
∆φ 2 ∆φ 3 ∆φ 4 ··· ∆φn1
5
............................................∆φn− 1 ∆φn ∆φn+1 ··· ∆φ 2 n− 31
2 n− 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
Perform the row operations
R
′
i
=Ri−Ri− 1in the orderi=n, n− 1 ,n− 2 ,...,2. The result is
Y=(−1)
n∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∆φ 0 ∆φ 1 ∆φ 2 ··· ∆φn− 2 1∆
2
φ 0 ∆
2
φ 1 ∆
2
φ 2 ··· ∆
2
φn− 1 ∆α 0∆
2
φ 1 ∆
2
φ 2 ∆
2
φ 3 ··· ∆
2
φn ∆α 1..................................................∆2
φn− 2 ∆2
φn− 1 ∆2
φn ··· ∆2
φ 2 n− 4 ∆αn− 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n,
where
αm=1
2 m+1