Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

134 4. Particular Determinants


Let

A=|φm|n, 0 ≤m≤ 2 n− 2 ,

where


φm=

x
2 m+2
− 1

m+1

.

Ais identical to|aij|n, whereaijis defined in Theorem 4.41. LetYdenote


the determinant of order (n+ 1) obtained by borderingAby the row


[
111 ... 1 •

]

n+1

below and the column


[

1

1

3

1

5

...

1

2 n− 1


]T

n+1

on the right.


Theorem 4.42.


Y=−nKnφ

n(n−1)
0

n

i=1

2

2 i− 1
(n+i−1)!

(n−i)!(2i)!

φ

n−i
0 ,

whereKnis the simple Hilbert determinant.


Proof. Perform the column operations


C


j
=Cj−Cj− 1

in the orderj=n, n− 1 ,n− 2 ,...,2. The result is a determinant in which


the only nonzero element in the last row is a 1 in position (n+1,1). Hence,


Y=(−1)

n

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∆φ 0 ∆φ 1 ∆φ 2 ··· ∆φn− 2 1

∆φ 1 ∆φ 2 ∆φ 3 ··· ∆φn− 1

1
3
∆φ 2 ∆φ 3 ∆φ 4 ··· ∆φn

1
5
............................................

∆φn− 1 ∆φn ∆φn+1 ··· ∆φ 2 n− 3

1
2 n− 1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

Perform the row operations


R


i
=Ri−Ri− 1

in the orderi=n, n− 1 ,n− 2 ,...,2. The result is


Y=(−1)

n

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∆φ 0 ∆φ 1 ∆φ 2 ··· ∆φn− 2 1


2
φ 0 ∆
2
φ 1 ∆
2
φ 2 ··· ∆
2
φn− 1 ∆α 0


2
φ 1 ∆
2
φ 2 ∆
2
φ 3 ··· ∆
2
φn ∆α 1

..................................................


2
φn− 2 ∆

2
φn− 1 ∆

2
φn ··· ∆

2
φ 2 n− 4 ∆αn− 2

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

,

where


αm=

1

2 m+1

.
Free download pdf