Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.10 Henkelians 3 135

Now, perform the row and column operations


R


i

=

i− 2

r=0

(−1)

r

(

i− 2

r

)

Ri−r,i=n, n− 1 ,n− 2 ,..., 3 ,

C


j=

j− 1

r=0

(−1)

r

(

j− 1

r

)

Cj−r,j=n− 1 ,n− 2 ,..., 2.

The result is


Y=(−1)

n

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∆φ 0 ∆
2
φ 0 ∆
3
φ 0 ··· ∆
n− 1
φ 0 1


2
φ 0 ∆
3
φ 0 ∆
4
φ 0 ··· ∆
n
φ 0 ∆α 0


3
φ 0 ∆
4
φ 0 ∆
5
φ 0 ··· ∆
n+1
φ 0 ∆
2
α 0

...................................................


n
φ 0 ∆
n+1
φ 0 ∆
n+2
φ 0 ··· ∆
2 n− 2
φ 0 ∆
n− 1
α 0

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

,

where



m
φ 0 =

φ

m+1
0

m+1

.

Transfer the last column to the first position, which introduces the sign


(−1)


n+1
, and then remove powers ofφ 0 from all rows and columns except

the first column, which becomes


[

1

∆α 0

φ 0


2
α 0

φ
2
0

···


n− 1
α 0

φ

n− 1
0

]T

.

The other (n−1) columns are identical with the corresponding columns of


the Hilbert determinantKn. Hence, expanding the determinant by elements


from the first column,


Y=−φ

n(n−1)
0

n

i=1

[

K

(n)
i 1


i− 1
α 0

]

φ

n−i
0

.

The proof is completed with the aid of (4.10.5) and (4.10.8) and the formula


for ∆


i− 1
α 0 in Appendix A.8. 

Further notes on the Yamazaki–Hori determinant appear in Section 5.8

on algebraic computing.


4.10.4 A Particular Case of the Yamazaki–Hori Determinant


Let


An=|φm|n, 0 ≤m≤ 2 n− 2 ,

where


φm=

x

2 m+2
− 1

m+1

. (4.10.29)
Free download pdf