136 4. Particular Determinants
Theorem.
An=Kn(x2
−1)n
2
,Kn=Kn(0).Proof.
φ 0 =x2
− 1.Referring to Example A.3 (withc= 1) in the section on differences in
Appendix A.8,
∆
m
φ 0 =φm+1
0m+1.
Hence, applying the theorem in Section 4.8.2 on Hankelians whose elements
are differences,
An=|∆m
φ 0 |n=
∣
∣
∣
∣
φm+1
0m+1∣ ∣ ∣ ∣ n =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
φ 01
2φ
2
01
3φ
3
0···
1
nφ
n
0
1
2φ
2
01
3φ
3
01
4φ
4
0··· ···
1
3φ
3
01
4φ
4
01
5φ
5
0··· ···
..................................
1
nφ
n
0··· ··· ···
1
2 n− 1φ2 n− 1
0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
Remove the factorφ
i
0 from rowi,1≤i≤n, and then remove the factorφ
j− 1
0 from columnj,2≤j ≤n. The simple Hilbert determinantKnappears and the result is
An=Knφ(1+2+3+···+n)(1+2+3+···+n−1)
0=Knφn
20 ,which proves the theorem.
Exercises
1.Define a triangular matrix [aij], 1≤i≤ 2 n−1, 1≤j≤ 2 n−i,asfollows:column 1 =[
1 uu2
···u2 n− 2]T
,
row 1 =[
1 vv2
···v2 n− 2]
.
The remaining elements are defined by the rule that the difference be-tween consecutive elements in any one diagonal parallel to the secondarydiagonal is constant. For example, one diagonal is[u31
3
(2u3
+v3
)1
3
(u3
+2v3
)v3