Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.11 Hankelians 4 139

Qn=Qn(x)=

[

x

2(i+j−1)

i+j− 1

]

n

. (4.11.12)

BothKnandQnare Hankelians andQn(1) =Kn, the simple Hilbert


matrix.


Sn=Sn(x)=

[

vnix
2 j− 1

i+j− 1

]

n

, (4.11.13)

where thevniarev-numbers.


Hn=Hn(x, t)=Sn(x)+tIn

=

[

h

(n)
ij

]

n

,

where


h

(n)
ij

=

vnix

2 j− 1

i+j− 1

+δijt,

Hn=Hn(x,−t)=Sn(x)−tIn

=

[

h

(n)
ij

]

n

, (4.11.14)

where


h

(n)
ij (x, t)=h

(n)
ij
(x,−t),

H ̄

n(x,−t)=(−1)

n
Hn(−x, t). (4.11.15)

Theorem 4.43.


K

− 1
nQn=S

2
n.

Proof. Referring to (4.11.7) and applying the formula for the product


of two matrices,


K

− 1
n
Qn=

[

vnivnj

i+j− 1

]

n

[

x

2(i+j−1)

i+j− 1

]

n

=

[

n

k=1

vnivnk

i+k− 1

x

2(k+j−1)

k+j− 1

]

n

=

[

n

k=1

(

vnix

2 k− 1

i+k− 1

)(

vnkx

2 j− 1

k+j− 1

)

]

n

=S

2
n. 

Theorem 4.44.


Bn=KnHnHn,

where the symbols can be interpreted as matrices or determinants.


Proof. Applying Theorem 4.43,


Bn=Qn−t

2
Kn
Free download pdf