Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.11 Hankelians 4 141

The only element which remains in columnnis a 1 in position (n+1,n).


Hence,


En+1=−

∣ ∣ ∣ ∣ ∣ ∣ ∣

h 11 h 12 ··· h 1 ,n− 1 vn 1 /n

h 21 h 22 ··· h 2 ,n− 1 vn 2 /(n+1)

.....................................................

(hn 1 −t)(hn 2 −t) ··· (hn,n− 1 −t) vnn/(2n−1)

∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

(4.11.20)

It is seen from (4.11.3) (withi=n) that the sum of the elements in the


last column is unity and it is seen from the lemma that the sum of the


elements in columnjisx
2 j− 1
,1≤j≤n−1. Hence, after performing the


row operation


R


n=

n

i=1

Ri, (4.11.21)

the result is


En+1=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

h 11 h 12 ··· h 1 ,n− 1 vn 1 /n

h 21 h 22 ··· h 2 ,n− 1 vn 2 /(n+1)

................................................

hn− 1 , 1 hn− 1 , 2 ··· hn− 1 ,n− 1 vn,n− 1 /(2n−2)

xx
3
··· x
2 n− 3
1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

. (4.11.22)

The final set of column operations is


C


j=Cj−x

2 j− 1
Cn, 1 ≤j≤n− 1 , (4.11.23)

which removes thex’s from the last row. The result can then be expressed


in the form


En+1=−


∣h
(n)

ij



n− 1

, (4.11.24)

where, referring to (4.11.5),


h

(n)

ij
=h

(n)
ij


vnix

2 j− 1

n+i− 1

=vnix

2 j− 1

(

1

i+j− 1


1

i+n− 1

)

+δijt

=

(

vni

i+n− 1

)(

(n−j)x

2 j− 1

i+j− 1

)

+δijt

=−

(

vn− 1 ,i

n−i

)(

(n−j)x
2 j− 1

i+j− 1

)

+δijt

=−

(

n−j

n−i

)(

vn− 1 ,ix

2 j− 1

i+j− 1

−δijt

)

=−

(

n−j

n−i

)

̄h
(n−1)
ij

,


∣h
(n)

ij



n− 1

=−


∣− ̄h
(n−1)
ij



n− 1

. (4.11.25)
Free download pdf