142 4. Particular Determinants
Theorem 4.45 now follows from (4.11.24).
Theorem 4.46.
Gn=(−1)n− 1
vnnKnHnHn− 1 ,whereGnis defined in (4.11.10).
Proof. Perform the row operation
R
′
i=n
∑k=1RkonHnand refer to the lemma. Rowibecomes
[
(x+t),(x3
+t),(x5
+t),...,(x2 n− 1
+t)]
.
Hence,
Hn=n
∑j=1(x2 j− 1
+t)H(n)
ij ,^1 ≤i≤n. (4.11.26)It follows from the corollary to Theorem 4.44 that
B
(n)
ij=B
(n)
ji=
n
∑r=1n
∑s=1H
(n)
jrH
(n)
rsK
(n)
si. (4.11.27)
Hence, applying (4.11.7),
B
(n)
ij
=Knvnin
∑r=1n
∑s=1vnsH(n)
rsH(n)
jri+s− 1. (4.11.28)
Puti=n, substitute the result into (4.11.10), and apply (4.11.16) and
(4.11.24):
Gn=Knvnnn
∑r=1n
∑s=1vnsH(n)
rsn+s− 1n
∑j=1(x2 j− 1
+t)H(n)
jr=KnvnnHnn
∑r=1n
∑s=1vnsH(n)
rsn+s− 1=−KnvnnHnEn+1. (4.11.29)The theorem follows from Theorem 4.45.
4.11.3 Some Determinants with Binomial and Factorial
Elements
Theorem 4.47.
a.∣
∣
∣
∣
(
n+j− 2n−i)∣
∣
∣
∣
n=(−1)
n(n−1)/ 2
,