Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

142 4. Particular Determinants


Theorem 4.45 now follows from (4.11.24). 


Theorem 4.46.


Gn=(−1)

n− 1
vnnKnHnHn− 1 ,

whereGnis defined in (4.11.10).


Proof. Perform the row operation


R


i=

n

k=1

Rk

onHnand refer to the lemma. Rowibecomes


[
(x+t),(x

3
+t),(x

5
+t),...,(x

2 n− 1
+t)

]

.

Hence,


Hn=

n

j=1

(x

2 j− 1
+t)H

(n)
ij ,^1 ≤i≤n. (4.11.26)

It follows from the corollary to Theorem 4.44 that


B

(n)
ij

=B

(n)
ji

=

n

r=1

n

s=1

H

(n)
jr

H

(n)
rs

K

(n)
si

. (4.11.27)

Hence, applying (4.11.7),


B

(n)
ij
=Knvni

n

r=1

n

s=1

vnsH

(n)
rsH

(n)
jr

i+s− 1

. (4.11.28)

Puti=n, substitute the result into (4.11.10), and apply (4.11.16) and


(4.11.24):


Gn=Knvnn

n

r=1

n

s=1

vnsH

(n)
rs

n+s− 1

n

j=1

(x

2 j− 1
+t)H

(n)
jr

=KnvnnHn

n

r=1

n

s=1

vnsH

(n)
rs

n+s− 1

=−KnvnnHnEn+1. (4.11.29)

The theorem follows from Theorem 4.45. 


4.11.3 Some Determinants with Binomial and Factorial


Elements


Theorem 4.47.


a.





(

n+j− 2

n−i

)∣




n

=(−1)

n(n−1)/ 2
,
Free download pdf