Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

146 4. Particular Determinants


Proof. Apply the Jacobi identity (Section 3.6.1) toAr, wherer≥i+1:







A

(r)
ij

A

(r)
ir

A

(r)
rj A

(r)
rr






=ArA

(r)
ir,jr

,

=ArA

(r−1)
ij

,

Ar− 1 A

(r)
ij
−ArA

(r−1)
ij

=A

(r)
ir

A

(r)
jr

. (4.11.47)

Scale the cofactors and refer to Theorems 4.48 and 4.49a:


A

ij
r−A

ij
r− 1

=

Ar

Ar− 1

(

A

ri
r A

rj
r

)

=2

−(4r−5)
A

ri
rA

rj
r

=2λr− 1 ,i− 1 λr− 1 ,j− 1. (4.11.48)

Hence,


2

n

r=i+1

λr− 1 ,i− 1 λr− 1 ,j− 1 =

n

r=i+1

(

A

ij
r

−A

ij
r− 1

)

=A

ij
n−A

ij
i

=A

ij
n

− 2

2(i−1)
λi− 1 ,j− 1 , (4.11.49)

which yields a formula for the scaled cofactorA


ij
n. The stated formula for

the simple cofactorA


(n)
ij follows from Theorem 4.49a. 

Let

En=|Pm(0)|n, 0 ≤m≤ 2 n− 2 , (4.11.50)

wherePm(x) is the Legendre polynomial [Appendix A.5]. Then,


P 2 m+1(0)=0,

P 2 m(0) = νm. (4.11.51)

Hence,


En=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

ν 0 • ν 1 • ν 2 ···


  • ν 1 • ν 2 • ···


ν 1 • ν 2 • ν 3 ···


  • ν 2 • ν 3 • ···


ν 2 • ν 3 • ν 4 ···

........................

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

. (4.11.52)

Theorem 4.51.


En=|Pm(0)|n=(−1)

n(n−1)/ 2
2

−(n−1)
2
.
Free download pdf