148 4. Particular Determinants
Theorem 4.52.
(xG′
n)
′
=Kn(h)xh
P2
n
(x, h),where
Pn(x, h)=D
h+n
[xn
(1 +x)h+n− 1
](h+n−1)!.
Proof. Referring to (4.10.8),
Gn(x)=n
∑i=1n
∑j=1K
(n)
ij
x
h+i+j− 1h+i+j− 1=Kn(h)n
∑i=1n
∑j=1VniVnjx
h+i+j− 1(h+i+j−1)
2. (4.11.57)
Hence,
(xG′
n)
′
=Kn(h)xhn
∑i=1n
∑j=1VniVnjxi+j− 2=Kn(h)xh
P2
n(x, h), (4.11.58)where
Pn(x, h)=n
∑i=1(−1)
n+i
Vnixi− 1=
n
∑i=1(h+n+i−1)!xi− 1(i−1)! (n−i)! (h+i−1)!=
n
∑i− 1D
h+n
(xh+n+i− 1
)(n−i)! (h+i−1)!, (4.11.59)
(h+n−1)!Pn(x, h)=n
∑i=1(
h+n− 1h+i− 1)
D
h+n
(xh+n+i− 1
)=D
h+n[
xnn
∑i=1(
h+n− 1h+i− 1)
xh+i− 1]
=D
h+n[
xnh+n− 1
∑r=h(
h+n− 1r)
xr]
=D
h+n[
xn
(1 +x)h+n− 1
−ph+n− 1 (x)]
, (4.11.60)
wherepr(x) is a polynomial of degreer. The theorem follows.
LetE(x)=|eij(x)|n− 1 ,