4.11 Hankelians 4 149where
eij(x)=(1 +x)i+j+1
−xi+j+1i+j+1. (4.11.61)
Theorem 4.53. The polynomial determinantE satisfies the nonlinear
differential equation
[
{x(1 +x)E}′′] 2
=4n2
(xE)′
{(1 +x)E}′
.Proof. Let
A(x, ξ)=|φm(x, ξ)|n, 0 ≤m≤ 2 n− 2 ,where
φm(x, ξ)=1
m+1[
(ξ+x)m+1
−c(ξ−1)m+1
+(c−1)ξm+1]
. (4.11.62)
Then,
∂
∂ξφm(x, ξ)=mφm− 1 (x, ξ),φ 0 (x, ξ)=x+c. (4.11.63)Hence, from Theorem 4.33 in Section 4.9.1,Ais independent ofξ. Put
ξ= 0 and−xin turn and denote the resulting determinants byUandV,
respectively. Then,
A=U=V, (4.11.64)
where
U(x, c)=|φm(x,0)|n=
∣
∣
∣
∣
xm+1
+(−1)m
cm+1∣
∣
∣
∣
n, 0 ≤m≤ 2 n− 2=
∣
∣
∣
∣
xi+j− 1
+(−1)i+j
ci+j− 1∣
∣
∣
∣
n. (4.11.65)
Put
ψm(x)=φm(x,−x)=
(−1)
mm+1[c(1 +x)m+1
+(1−c)xm+1
] (4.11.66)V(x, c)=|ψm(x)|n,=
∣
∣
∣
∣
c(1 +x)
m+1
+(1−c)x
m+1m+1∣
∣
∣
∣
n=
∣
∣
∣
∣
c(1 +x)
i+j− 1
+(1−c)x
i+j− 1i+j− 1∣
∣
∣
∣
n