Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.11 Hankelians 4 149

where


eij(x)=

(1 +x)

i+j+1
−x

i+j+1

i+j+1

. (4.11.61)

Theorem 4.53. The polynomial determinantE satisfies the nonlinear


differential equation


[

{x(1 +x)E}

′′

] 2

=4n

2
(xE)


{(1 +x)E}


.

Proof. Let


A(x, ξ)=|φm(x, ξ)|n, 0 ≤m≤ 2 n− 2 ,

where


φm(x, ξ)=

1

m+1

[

(ξ+x)

m+1
−c(ξ−1)

m+1
+(c−1)ξ

m+1

]

. (4.11.62)

Then,



∂ξ

φm(x, ξ)=mφm− 1 (x, ξ),

φ 0 (x, ξ)=x+c. (4.11.63)

Hence, from Theorem 4.33 in Section 4.9.1,Ais independent ofξ. Put


ξ= 0 and−xin turn and denote the resulting determinants byUandV,


respectively. Then,


A=U=V, (4.11.64)

where


U(x, c)=|φm(x,0)|n

=





x

m+1
+(−1)

m
c

m+1





n

, 0 ≤m≤ 2 n− 2

=





x

i+j− 1
+(−1)

i+j
c

i+j− 1





n

. (4.11.65)

Put


ψm(x)=φm(x,−x)

=

(−1)

m

m+1

[c(1 +x)

m+1
+(1−c)x

m+1
] (4.11.66)

V(x, c)=|ψm(x)|n,

=





c(1 +x)
m+1
+(1−c)x
m+1

m+1





n

=





c(1 +x)
i+j− 1
+(1−c)x
i+j− 1

i+j− 1





n

. (4.11.67)
Free download pdf