Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.11 Hankelians 4 151

=Dc

n

r=0

frc

r

=f 1 +

n

r=2

rfrc

r− 1

. (4.11.75)


Hence,


f 1 =

[

Dc{c

n
U(x, c

− 1
)}

]

c=0

=Dc

[

c

n





x

i+j− 1
−(−1)

i+j
c

− 1

i+j− 1





n

]

c=0

=

[

Dc





cx

i+j− 1
−(−1)

i+j

i+j− 1





n

]

c=0

=

n

k=1

Gn(x, 0 ,k)

=Gn(x,0), (4.11.76)

whereGn(x, h, k) andGn(x, h) are defined in the first line of (4.11.55) and


(4.11.56), respectively.


E=G


,

(xE)


=(xG


)


=KnP

2
n

, (4.11.77)

where


Kn=Kn(0),

Pn=Pn(x,0)

=

D

n
[x
n
(1 +x)
n− 1
]

(n−1)!

. (4.11.78)

Let


Qn=

D

n
[x

n− 1
(1 +x)

n
]

(n−1)!

. (4.11.79)

Then,


Pn(− 1 −x)=(−1)

n
Qn.

Since


E(− 1 −x)=E(x),

it follows that


{(1 +x)E}


=KnQ

2
n

,

{xE}


{(1 +x)E}


=(KnPnQn)

2

. (4.11.80)

Free download pdf