Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.12 Hankelians 5 155

=

1

2

n+1
πi


C


2
−1)
n

(ζ−x)
n+1

dζ (putζ=x+2t)

=

1

2 n+1πi


C′

[(x+1+2t)(x−1+2t)]

n

(2t)n+1

dt

=

1

2 πi


C′

g(t)

t
n+1

dt

=

g
(n)
(0)

n!

,

where


g(t)=

[{

1
2
(x+1)+t

}{

1
2
(x−1) +t

}]n

. (4.12.5)


The lemma follows. 


[(u+t)(v+t)]

n
=

n

r=0

n

s=0

(

n

r

)(

n

s

)

u

n−r
v

n−s
t

r+s

=

2 n

p=0

λnpt

p

where


λnp=

p

s=0

(

n

s

)(

n

p−s

)

u

n−s
v

n−p+s
, 0 ≤p≤ 2 n, (4.12.6)

which, by symmetry, is unaltered by interchanginguandv.


In particular,

λ 00 =1,λn 0 =(uv)

n
,λn, 2 n=1,λnn=Pn(x). (4.12.7)

Lemma 4.57.


a.λi,i−r=(uv)
r
λi,i+r,

b.λi,i−rλj,j+r=λi,i+rλj,j−r.


Proof.


λn,n+r=

n+r

s=0

(

n

s

)(

n

n+r−s

)

u

n−s
v

s−r

=

n+r

s=r

(

n

s

)(

n

s−r

)

u

n−s
v

s−r
.

Changing the sign ofr,


λn,n−r=

n−r

s=−r

(

n

s

)(

n

s+r

)

u

n−s
v

s+r
(puts=n−σ)
Free download pdf