Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.12 Hankelians 5 157

=2

n− 1

n

i=2

(uv)

i− 1

=2

n− 1
(uv)

1+2+3+···+n− 1

=2

−(n−1)
2
(x

2
−1)

1
2
n(n−1)
.

which completes the proof.


Exercises


1.Prove that

|Hm(x)|n=(−2)

n(n−1)/ 2
1! 2! 3!···(n−1)!,

0 ≤m≤ 2 n− 2

whereHm(x) is the Hermite polynomial.

2.If

An=





Pn− 1 Pn

Pn Pn+1





,

prove that

n(n+1)A

′′
n=2(P


n)

2

. (Beckenbach et al.)


4.12.2 The Generalized Geometric Series and Eulerian


Polynomials


Notes on the generalized geometric seriesφm(x), the closely related function


ψm(x), the Eulerian polynomialAn(x), and Lawden’s polynomialSn(x) are


given in Appendix A.6.


ψm(x)=



r=1

r

m
x

r
,



m(x)=ψm+1(x), (4.12.13)

Sm(x)=(1−x)

m+1
ψm,m≥ 0 , (4.12.14)

Am(x)=Sm(x),m> 0 ,

A 0 =1,S 0 =x. (4.12.15)

Theorem (Lawden).


En=|ψi+j− 2 |n=

λnx

n(n+1)/ 2

(1−x)
n^2

,

Fn=|ψi+j− 1 |n=

λnn!x

n(n+1)/ 2

(1−x)
n(n+1)

,

Gn=|ψi+j|n=

λn(n!)

2
x

n(n+1)/ 2
(1−x

n+1
)

(1−x)
(n+1)^2

,
Free download pdf