Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.12 Hankelians 5 161

From (4.12.28) and (4.12.33),


xu


n− 1

=

(

Gn− 1

Fn− 1

) 2 (

Fn

Gn

)(

Gn− 2

Gn− 1

)(

Gn

Gn− 1

)

,

unu

n− 1

u
2
n− 1

=

(1−x

n− 1
)(1−x

n+1
)

x(1−x
n
)
2

[

vn

vn+1

]

. (4.12.35)

From (4.12.16),


(
Fn− 1

Gn− 1

) 2

=

En− 1

Gn− 1


(

En

Gn− 1

)(

Gn− 2

Gn− 1

)

=

(

En− 1

En

)(

En

Gn− 1

)[

1 −

(

En

En− 1

)(

Gn− 2

Gn− 1

)]

1

u
2
n− 1

=vn

(

x

n

1 −x
n

)[

1 −

x(1−x

n− 1
)

1 −x
n

]

=

x
n
(1−x)

(1−x
n
)
2

vn.

Replacingnbyn+1,


1

u
2
n

=

x

n+1
(1−x)

(1−x
n+1
)
2

vn+1. (4.12.36)

Hence,


(
un

un− 1

) 2

=

1

x

(

1 −x

n+1

1 −xn

) 2 [

vn

vn+1

]

. (4.12.37)

Eliminatingvn/vn+1from (4.12.35) yields the differential–difference equa-


tion


un=

(

1 −x

n+1

1 −x
n− 1

)

u


n− 1. (4.12.38)

Evaluatingunas defined by (4.12.33) for small values ofn, it is found that


u 1 =

1!(1−x

2
)

(1−x)
2

,u 2 =

2!(1−x

3
)

(1−x)
3

,u 3 =

3!(1−x

4
)

(1−x)
4

. (4.12.39)

The solution which satifies (4.12.38) and (4.12.39) is


un=

Gn

Fn

=

n!(1−x
n+1
)

(1−x)
n+1

. (4.12.40)

From (4.12.36),


vn=

En− 1

En

=

(1−x)

2 n− 1

(n−1)!
2
x
n

,

which yields the difference equation


En=

(n−1)!

2
x

n

(1−x)
2 n− 1

En− 1. (4.12.41)
Free download pdf