Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

174 5. Further Determinant Theory


5.1.3 Orthogonal Polynomials


Determinants which represent orthogonal polynomials (Appendix A.5)


have been constructed using various methods by Pandres, R ̈osler, Yahya,


Stein et al., Schleusner, and Singhal, Frost and Sackfield and others. The


following method applies the Rodrigues formulas for the polynomials.


Let

An=|aij|n,

where


aij=

(

j− 1

i− 1

)

u

(j−i)

(

j− 1

i− 2

)

v

(j−i+1)
,u

(r)
=D

r
(u),etc.,

u=

vy


y

=v(logy)


. (5.1.9)


In some detail,


An=




∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

uu


u

′′
u

′′′
··· u

(n−2)
u

(n−1)

−vu−v


2 u


−v

′′
3 u

′′
−v

′′′
··· ··· ···

−vu− 2 v


3 u


− 3 v

′′
··· ··· ···

−vu− 3 v


··· ··· ···

−v ··· ··· ···

............................

−vu−(n−1)v





∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

(5.1.10)

Theorem.


a.A

(n+1)
n+1,n=−A


n,

b.An=


v
n
D
n
(y)

y

.

Proof. ExpressAnin column vector notation:


An=


∣C

1 C 2 C 3 ···Cn



n

,

where


Cj=

[

a 1 ja 2 ja 3 j···aj+1,jOn−j− 1

]T

n

(5.1.11)

whereOrrepresents an unbroken sequence ofrzero elements.


LetC

j
denote the column vector obtained by dislocating the elements

ofCjone position downward, leaving the uppermost position occupied by


a zero element:


C


j=

[

Oa 1 ja 2 j···ajjaj+1,jOn−j− 2

]T

n

. (5.1.12)

Then,


C


j

+C


j

=

[

a


1 j
(a


2 j
+a 1 j)(a


3 j
+a 2 j)···(a


j+1,j
+ajj)aj+1,jOn−j− 2

]T

n

.
Free download pdf